
0. Recall the properties of the notion of null space of a given matrix stated in the theoretical
result below:

Let A be an (m× n)-matrix. The statements below hold:
(1) 0 ∈ N (A).
(2) For any u,v ∈ Rn, if u,v ∈ N (A) then u + v ∈ N (A).
(3) For any u ∈ Rn, for any α ∈ R, if u ∈ N (A) then αu ∈ N (A).
(4) For any u,v ∈ Rn, for any α, β ∈ R, if u,v ∈ N (A) then αu + βv ∈ N (A).

Also recall the properties of the notion of column space of a given matrix stated in the
theoretical result below:

Suppose H is a (p× q)-matrix. Then the statements below hold.
(1) 0p ∈ C(H).
(2) For any x,y ∈ Rp, if x ∈ C(H) and y ∈ C(H) then x + y ∈ C(H).
(3) For any x ∈ Rp, for any α ∈ R, if x ∈ C(H) then αx ∈ C(H).
(4) For any x,y∈Rp, for any α, β∈R, if x∈C(H) and y∈C(H) then αx+βy∈C(H).

They motivate the definition for the notion of subspaces of Rn.
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1. Definition. (Subspaces of Rn.)
Let W be a set of vectors in Rn.
W is said to constitute a subspace of Rn if and only if the statements (S1), (S2), (S3) hold:

(S1) 0n ∈ W .

(S2) For any vectors u,v ∈ Rn, if u ∈ W and v ∈ W then u + v ∈ W .

(S3) For any vector u ∈ Rn, for any α ∈ R, if u ∈ W then αu ∈ W .

Remarks.
(a) Some people reads (S2) as:

‘vector addition is closed in W .’
(b) Some people reads (S3) as:

‘scalar multiplication is closed in W .’

(c) Some people like to combine (S2) and (S3) into
(⋆) ‘For any vectors u,v ∈ Rn, for any α ∈ R, if u ∈ W and v ∈ W then αu+ v ∈ W .’

(d) We have already learnt plenty of examples of this concept without knowing that they
are examples.
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2. Examples on subspaces.
(a) The null space of every (m× n)-matrix is a subspace of Rn.

(b) The column space of every (p× q)-matrix is a subspace of Rp.

(c) Suppose z1, z2, · · · , zn are vectors in Rm. Then the span of z1, z2, · · · , zn is subspace of
Rm.

(d) (‘Extreme case’.)
{0n} is a subspace of Rn. It is called the zero subspace of Rn.

(In fact, N (In) = {0n}.)

(e) (‘Extreme case’.)
Rn is a subspace of N (On×n) = Rn.
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3. Lemma (1).
Suppose W is a subspace of Rn.
Then for any vectors u,v ∈ Rn, for any α, β ∈ R, if u,v ∈ W then αu + βv ∈ W .

Proof of Lemma (1).
Suppose W is a subspace of Rn.

Pick any vectors u,v ∈ Rn. Pick any α, β ∈ R.

Suppose u,v ∈ W .

Then by (S3), αu, βv ∈ W .

Therefore by (S2), αu + βv ∈ W .

Remarks.
(a) It follows that −u, v − u belong to W whenever u,v belongs to W .
(b) So a subspace of Rn is very much like a copy of Rk (for some k) ‘sitting inside Rn’ and

containing the zero vector in Rn.
We may perform addition and scalar multiplication on the vectors in this ‘copy of Rk’ in
an arbitrary manner without the resultants ‘leaving’ it.
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4. Lemma (2).
Suppose W is a subspace of Rn.
Then every linear combination of vectors in W belongs to W .

Proof of Lemma (2).
Suppose W is a subspace of Rn.

Suppose x is a linear combination of vectors in W .

By definition, there are some u1,u2, · · · ,uk ∈ W and α1, α2, · · · , αk ∈ R so that
x = α1u1 + α2u2 + · · · + αkuk.

By Lemma (1), α1u1 + α2u2 ∈ W .

By Lemma (1) again, α1u1 + α2u2 + α3u3 = (α1u1 + α2u2) + α3u3 ∈ W .

By Lemma (1) again, α1u1 + α2u2 + α3u3 + α4u4 = (α1u1 + α2u2 + α3u3) + α4u4 ∈ W .

Repeatedly by Lemma (1), we deduce that α1u1 + α2u2 + · · · + αkuk ∈ W . The result
follows.
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Proof of Lemma (2), formally presented in the form of mathematical in-
duction.

Suppose W is a subspace of Rn. We are going to verify the statement
‘For any positive integer s, if u1,u2, · · · ,us ∈ W and α1, α2, · · · , αs ∈ R then α1u1+α2u2+· · ·+αsus ∈ W .’
Denote by P (s) the proposition below:

‘If u1,u2, · · · ,us ∈ W and α1, α2, · · · , αs ∈ R then α1u1 + α2u2 + · · · + αsus ∈ W .’
P (1) follows from (S3) immediately.
Suppose P (k) is true.
Note that P (k + 1) reads:
‘If u1,u2, · · · ,uk,uk+1 ∈ W and α1, α2, · · · , αk, αk+1 ∈ R then α1u1+α2u2+ · · ·+αkuk+αk+1uk+1 ∈ W .’
With the help of P (k), we verify P (k + 1):

Suppose u1,u2, · · · ,uk,uk+1 ∈ W and α1, α2, · · · , αk, αk+1 ∈ R.
By P (k), α1u1 + α2u2 + · · · + αkuk ∈ W .
By (S3), αk+1uk+1 ∈ W .
Then, by (S2), α1u1 + α2u2 + · · · + αkuk + αk+1uk+1 ∈ W .
Therefore P (k + 1) is true.

By the Principle of Mathematical Induction, P (s) is true for any positive integer s.
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5. Corollary to Lemma (2).
The statements below hold:

(a) Suppose A is an (m× n)-matrix.
Then every linear combination of vectors in N (A) is a vector in N (A).

(b) Suppose H is a (p× q)-matrix.
Then every linear combination of vectors in C(H) is a vector in C(H).

(c) Suppose z1, z2, · · · , zn are vectors in Rm.
Then every linear combination of vectors in Span ({z1, z2, · · · , zn}) is a vector in
Span ({z1, z2, · · · , zn}).
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6. Comments.
It will turn out that:
• every subspace of Rn is the null space of some matrix with n columns,
• it is the column space of some matrix with n rows, and
• it is the span of some collection of vectors in Rn.

You may wonder why we still bother to introduce the notion of subspace, when this concept
apparently yields ‘nothing’ we don’t know already from the study of other concepts.

In fact, the power of algebra (of which linear algebra is a part) is in

the unifying of (seemingly unrelated) concepts.

Lemma (2) and Corollary to Lemma (2) is a case in point.

Having proved Lemma (2), which applies to arbitrary subspaces of Rn, there will be no need
to verify the three statements in Corollary to Lemma (2) separately (and repeat the same
arguments for Lemma (2) in the respective separate justifications for the three statements
in Corollary to Lemma (2)).

This will save a lot of time and effort, (which can be put to better use elsewhere).
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7. Lemma (3).
Let W be a set of vector in Rn. Suppose W is non-empty as a set.
Further suppose that every linear combination of vectors in W belongs to W .
Then W is a subspace of Rn.

Proof of Lemma (3).
Let W be a set of vector in Rn. Suppose W is non-empty as a set.
Further suppose that every linear combination of vectors in W belongs to W .
• Because W is non-empty, we may pick some z ∈ W .

Note that 0n = z− z, and z− z is a linear combination of z, z.
Then by assumption, 0n belongs to W .
[Hence (S1) is satisfied.]

• Pick any u,v ∈ W . By definition, u + v is a linear combination of u,v.
Then u + v belongs to W .
[Hence W satisfies (S2).]

• Pick any u ∈ W . Pick any α ∈ R. By definition, αu is a linear combination of u.
Then αu belongs to W .
[Hence W satisfies (S3).]

It follows that W is a subspace of Rn.
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8. Combining Lemma (2), Lemma (3), we obtain Theorem (E) below.

Theorem (E). (Characterization of subspaces of Rn as special types of sub-
sets of Rn.)
Let W be a set of vectors in Rn. Suppose W is a non-empty set of vectors.
Then

W is a subspace of Rn

if and only if

every linear combination of vectors in W belongs to W .

Remark.
So what is so special about subspaces of Rn?

They are those and only those non-empty subsets of Rn, for which it happens that there
is definitely no chance for a linear combination of vectors in such a set to ‘fall outside’ the
set.
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9. Further examples.
(a) Let A be an (m× n)-matrix, and Z be a subspace of Rm.

Define W = {x ∈ Rn : Ax ∈ Z}.
Then W is a subspace of Rn.
Remark.
When Z = {0m}, W = N (A). So we may think of this example as a generalization of
the notion of null space.

(b) Let H be an (p× q)-matrix, and Z be a subspace of Rq.
Define

W =

{
y ∈ Rp :

There exist some u ∈ Z
such that y = Hu

}
.

Then W is a subspace of Rp.
Remark.
When Z = Rq, W = C(A). So we may think of this example as a generalization of the
notion of column space.
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(c) Let V,W be subspaces of Rn.
Recall that the intersection of V,W is the set

{x ∈ Rn : x ∈ V and x ∈ W}.

It is denoted by V ∩W .
V ∩W is a subspace of Rn.

(d) Let V,W be subspaces of Rn.
Define the set V +W , which is called the sum of V,W , by

V +W =

{
x ∈ Rn :

There exist some s ∈ V , t ∈ W
such that x = s + t

}
.

Then V +W is a subspace of Rn.
Remark.
V +W is the collection of those and only those vectors in Rn which can be expressed as
a sum of two vectors, one in V and the other in W .

(e) Let S be a set of vectors of Rn.
Define the set S⊥, which is called the perp of S, by

S⊥ =
{
x ∈ Rn : For any u ∈ S, utx = 0.

}
.

Then S⊥ is a subspace of Rn.
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