MATH1030 Span of vectors and column space of a matrix

1. Definition. (Column space of a matrix.)

Let H be a $(p \times q)$ -matrix.

The column space of the matrix H is defined to be the set

$$\left\{ \mathbf{y} \in \mathbb{R}^p : \begin{array}{l} \text{There exist some } \mathbf{u} \in \mathbb{R}^q \\ \text{such that } \mathbf{y} = H \mathbf{u}. \end{array} \right\}.$$

We denote this set by $\mathcal{C}(H)$.

Remark. We are applying the method of specification, with 'selection criterion'

(*) 'there exist some $\mathbf{u} \in \mathbb{R}^q$ such that $\mathbf{y} = H\mathbf{u}$.'

to form a certain set of vectors in \mathbb{R}^p , called the column space of the matrix H.

When put into plain words, the selection criterion (*) reads:

'y is a vector in \mathbb{R}^p which can be expressed as the product of H in the left and some vector in \mathbb{R}^q in the right.'

According to this 'selection criterion':

- Those vectors in \mathbb{R}^p resultant from multiplying H from the left to some vector in \mathbb{R}^q are collected.
- Those vectors in \mathbb{R}^p not resultant from multiplying H from the left to some vector in \mathbb{R}^q are 'discarded'.

For this reason, $\mathcal{C}(H)$ is simply the collection of all vectors in \mathbb{R}^p which can be 'expressed in the form' $H\mathbf{u}$, and only such vectors.

So very often the set $\mathcal{C}(H)$ is given the short-hand $\{H\mathbf{u} \mid \mathbf{u} \in \mathbb{R}^q\}$.

Further remark. How to use the various versions of the definitions?

Always remember, whenever $\mathbf{v} \in \mathbb{R}^p$, the statements below mean the same thing:

- (a) $\mathbf{v} \in \mathcal{C}(H)$.
- (b) There exists some $\mathbf{u} \in \mathbb{R}^q$ such that $\mathbf{v} = H\mathbf{u}$.

2. Theorem (1). (Column space of a matrix as a 'subspace'.)

Suppose H is a $(p \times q)$ -matrix. Then the statements below hold.

- (1) $\mathbf{0}_p \in \mathcal{C}(H).$
- (2) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$, if $\mathbf{x} \in \mathcal{C}(H)$ and $\mathbf{y} \in \mathcal{C}(H)$ then $\mathbf{x} + \mathbf{y} \in \mathcal{C}(H)$.
- (3) For any $\mathbf{x} \in \mathbb{R}^p$, for any $\alpha \in \mathbb{R}$, if $\mathbf{x} \in \mathcal{C}(H)$ then $\alpha \mathbf{x} \in \mathcal{C}(H)$.

(4) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$, for any $\alpha, \beta \in \mathbb{R}$, if $\mathbf{x} \in \mathcal{C}(H)$ and $\mathbf{y} \in \mathcal{C}(H)$ then $\alpha \mathbf{x} + \beta \mathbf{y} \in \mathcal{C}(H)$.

3. Proof of Statements (1), (2), (3) of Theorem (1).

Suppose H is a $(p \times q)$ -matrix.

- (1) Note that $\mathbf{0}_p = H\mathbf{0}_q$, and $\mathbf{0}_q \in \mathbb{R}^q$. Then $\mathbf{0}_p \in \mathcal{C}(H)$.
- (2) Pick any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$. Suppose $\mathbf{x}, \mathbf{y} \in \mathcal{C}(H)$.

[Ask: What to verify? Answer: ' $\mathbf{x} + \mathbf{y} \in \mathcal{C}(H)$ '.

According to definition, this reads: 'There exist some $\mathbf{w} \in \mathbb{R}^q$ such that $\mathbf{x} + \mathbf{y} = H\mathbf{w}$.' Further ask: How comes such a vector \mathbf{w} ? Answer: Make use of the information provided by ' $\mathbf{x} \in \mathcal{C}(H)$ ' and

' $\mathbf{y} \in \mathcal{C}(H)$ '.] By definition of $\mathcal{C}(H)$, there exist some $\mathbf{u}, \mathbf{v} \in \mathbb{R}^q$ such that $\mathbf{x} = H\mathbf{u}$ and $\mathbf{y} = H\mathbf{v}$. Now $\mathbf{x} + \mathbf{y} = H\mathbf{u} + H\mathbf{v} = H(\mathbf{u} + \mathbf{v})$. Since $\mathbf{u}, \mathbf{v} \in \mathbb{R}^q$, it happens that $\mathbf{u} + \mathbf{v} \in \mathbb{R}^q$. Then by the definition of $\mathcal{C}(H), \mathbf{x} + \mathbf{y} \in \mathcal{C}(H)$.

(3) Pick any x ∈ R^p. Pick any α ∈ R. Suppose x ∈ C(H).
[Ask: What to verify? Answer. 'αx ∈ C(H)'.
According to definition, this reads: 'There exist some w ∈ R^q such that αx = Hw ']
By definition of C(H), there exist some u ∈ R^q such that x = Hu.
Now αx = αHu = H(αu). Since u, v ∈ R^q, it happens that αu ∈ R^q.
Then by the definition of C(H), αx ∈ C(H).

4. An alternative way of visualizing the notion of *column space* is through the notions of *linear combination* and *span* (which will be introduced shortly).

Recall the definition for the notion of *linear combination*:

Let $\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n$ be vectors in \mathbb{R}^m . Let \mathbf{w} be a vector in \mathbb{R}^m . We say \mathbf{v} is a linear combination of $\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n$ if the statement (†) holds: (†) There exist some real numbers $\alpha_1, \alpha_2, \dots, \alpha_n$ such that $\mathbf{w} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2 + \dots + \alpha_n \mathbf{z}_n$.

The expression $\alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2 + \cdots + \alpha_n \mathbf{z}_n$ on its own is called the linear combination of the vectors $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$ and the scalars $\alpha_1, \alpha_2, \cdots, \alpha_n$.

5. Definition. (Span of a set of vectors in \mathbb{R}^m .)

Let $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$ be ('finitely many') vectors in \mathbb{R}^m .

The span of (the set of vectors) $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$ is defined to be the set

 $\{\mathbf{y} \in \mathbb{R}^m : \mathbf{y} \text{ is a linear combination of } \mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n \}$

We denote this set by Span $(\{\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n\})$ (or $\langle \{\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n\} \rangle$).

Remark. Span $(\{\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n\})$ is constructed with the help of the method of specification, with 'selection criterion'

(*) 'y is a linear combination of $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$,'

when we collect those and only those vectors in \mathbb{R}^m which are linear combinations of $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$.

For this reason, Span $(\{\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n\})$ is simply the collection of all vectors in \mathbb{R}^m which can be 'expressed' as linear combinations of $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$, and only such vectors.

Further remark. How to use the various versions of the definitions?

Always remember, whenever $\mathbf{y} \in \mathbb{R}^m$, the statements below mean the same thing:

- (\sharp) **y** belongs to Span ({ z_1, z_2, \dots, z_n }).
- ($\boldsymbol{\natural}$) \mathbf{y} is a linear combination of $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$.
- (b) There exist some real numbers $\alpha_1, \alpha_2, \cdots, \alpha_n$ such that $\mathbf{y} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2 + \cdots + \alpha_n \mathbf{z}_n$.

Further remark on terminologies and symbols.

(a) In some textbooks, it is emphasized that the notion of *span* is defined on sets of vectors; hence the brackets '{', '}' are used in the notation.

(b) For convenience, we may read 'y ∈ Span ({z₁, z₂, ..., z_n})' as 'y is spanned by z₁, z₂, ..., z_n'. When a set of vectors, say, V, is equal to the set Span ({z₁, z₂, ..., z_n}), we may read this set equality as 'the set V is spanned by z₁, z₂, ..., z_n'.

6. With the help of Lemma (A) (from the handout *linear combinations*), we are going to set up a 'dictionary' between the notion of *span* and the notion of *column space*.

Recall Lemma (A):

Let A be an $(m \times n)$ -matrix, and **t** be a vector in \mathbb{R}^n .

Suppose that for each $j = 1, 2, \dots, n$, the *j*-th column of A is \mathbf{a}_j and the *j*-th entry of \mathbf{t} is t_j . (So A =

$$\begin{bmatrix} \mathbf{a}_1 \mid \mathbf{a}_2 \mid \cdots \mid \mathbf{a}_n \end{bmatrix}$$
 and $\mathbf{t} = \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_n \end{bmatrix}$.)

Then $A\mathbf{t} = t_1\mathbf{a}_1 + t_2\mathbf{a}_2 + \cdots + t_n\mathbf{a}_n$.

7. Theorem (D). ('Dictionary' between the notion of span and the notion of column space.)

Let $\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q$ be vectors in \mathbb{R}^p , and H be a $(p \times q)$ -matrix.

Suppose that the *j*-th column of *H* is \mathbf{h}_j for each *j*. (So $H = [\mathbf{h}_1 | \mathbf{h}_2 | \cdots | \mathbf{h}_q]$.)

Then $\mathcal{C}(H) = \text{Span} (\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q\}).$

Remark. The significance of Theorem (D) is that every statement about spans of collections of finitely many vectors can be translated into a statement about column spaces of matrices, and vice versa.

Further remark. The equality $(\mathcal{C}(H) = \text{Span}(\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q\}))$ is a set equality. What such an equality means is that the statements $(\dagger), (\ddagger)$ below hold simultaneously:

- (†) For any $\mathbf{y} \in \mathbb{R}^p$, if $\mathbf{y} \in \mathcal{C}(H)$ then $\mathbf{y} \in \mathsf{Span} (\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q\})$.
- (‡) For any $\mathbf{y} \in \mathbb{R}^p$, if $\mathbf{y} \in \mathsf{Span} (\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q\})$ then $\mathbf{y} \in \mathcal{C}(H)$.

8. Proof of Theorem (D).

Let $\mathbf{h}_1, \mathbf{h}_2, \dots, \mathbf{h}_q$ be vectors in \mathbb{R}^p , and H be a $(p \times q)$ -matrix. Suppose that the *j*-th column of H is \mathbf{h}_j for each *j*. Then $H = [\mathbf{h}_1 | \mathbf{h}_2 | \dots | \mathbf{h}_q]$. [We verify the statements $(\dagger), (\ddagger)$:

- (†) For any $\mathbf{y} \in \mathbb{R}^p$, if $\mathbf{y} \in \mathcal{C}(H)$ then $\mathbf{y} \in \mathsf{Span} (\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q\})$.
- (‡) For any $\mathbf{y} \in \mathbb{R}^p$, if $\mathbf{y} \in \text{Span} (\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q\})$ then $\mathbf{y} \in \mathcal{C}(H)$.

The arguments are given in two separate paragraphs, one for (\dagger) and the other (\ddagger) .]

- [We verify (†): 'For any y ∈ ℝ^p, if y ∈ C(H) then y ∈ Span ({h₁, h₂, ..., h_q}).'] Pick any y ∈ ℝ^p. Suppose y ∈ C(H).
 [Ask: Is it true that y ∈ Span ({h₁, h₂, ..., h_q})?] By definition, there exists some u ∈ ℝ^q such that y = Hu.
 For each i, denote the i-th entry of u by u_i.
 Then, by Lemma (A), y = u₁h₁ + u₂h₂ + ... + u_qh_q.
 Therefore y ∈ Span ({h₁, h₂, ..., h_q})
- [We verify (‡): 'For any y ∈ ℝ^p, if y ∈ Span ({h₁, h₂, ..., h_q}) then y ∈ C(H).'] Pick any y ∈ ℝ^p. Suppose y ∈ Span ({h₁, h₂, ..., h_q}). [Ask: Is it true that y ∈ C(H)?] By definition, there exists some u₁, u₂, ..., u_q ∈ ℝ such that y = u₁h₁ + u₂h₂ + ... + u_qh_q.

Define the vector \mathbf{u} in \mathbb{R}^q by $\mathbf{u} = \begin{vmatrix} u_1 \\ u_2 \\ \vdots \end{vmatrix}$.

Then by Lemma (A), we have $\mathbf{y} = H\mathbf{u}$. Therefore $\mathbf{y} \in \mathcal{C}(H)$.

It follows that $C(H) = \text{Span} (\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q\})$ holds.

9. Illustrations of the content of Theorem (D).

(a)
$$\mathcal{C}\left(\begin{bmatrix} 1 & 2 & 3 & 4\\ 1 & 3 & 5 & 7\\ 1 & 4 & 7 & 10 \end{bmatrix}\right) = \operatorname{Span}\left(\left\{\begin{bmatrix} 1\\1\\1\\\end{bmatrix}, \begin{bmatrix} 2\\3\\4\\\end{bmatrix}, \begin{bmatrix} 3\\5\\7\\\end{bmatrix}, \begin{bmatrix} 4\\7\\10\\\end{bmatrix}\right\}\right)$$

(b) $\mathcal{C}\left(\begin{bmatrix} 1 & 0 & 9\\ 0 & 2 & 8\\ 1 & 4 & 7\\ 0 & 6 & 6\\ 1 & 8 & 5 \end{bmatrix}\right) = \operatorname{Span}\left(\left\{\begin{bmatrix} 1\\0\\1\\0\\1\\\end{bmatrix}, \begin{bmatrix} 0\\2\\4\\6\\8\\\end{bmatrix}, \begin{bmatrix} 9\\8\\7\\6\\5\\\end{bmatrix}\right\}\right)$

10. Theorem (2). (Span of vectors as a 'subspace'.)

Suppose $\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n$ are vectors in \mathbb{R}^m . Write $V = \text{Span}(\{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n\})$. The statements below hold:

- (1) $0 \in V$.
- (2) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$, if $\mathbf{x} \in V$ and $\mathbf{y} \in V$ then $\mathbf{x} + \mathbf{y} \in V$.
- (3) For any $\mathbf{x} \in \mathbb{R}^m$, for any $\alpha \in \mathbb{R}$, if $\mathbf{x} \in V$ then $\alpha \mathbf{x} \in V$.
- (4) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$, for any $\alpha, \beta \in \mathbb{R}$, if $\mathbf{x} \in V$ and $\mathbf{y} \in V$ then $\alpha \mathbf{x} + \beta \mathbf{y} \in V$.

Proof of Theorem (2). This is a consequence of Theorem (1) and Theorem (D).