1. Definition. (Column space of a matrix.)

Let H be a $(p \times q)$ -matrix.

The column space of the matrix H is defined to be the set

$$\left\{ \mathbf{y} \in \mathbb{R}^p : \begin{array}{l} \text{There exist some } \mathbf{u} \in \mathbb{R}^q \\ \text{such that } \mathbf{y} = H\mathbf{u}. \end{array} \right\}$$

We denote this set by $\mathcal{C}(H)$.

Remark.

We are applying the method of specification, with 'selection criterion'

```
(*) 'there exist some \mathbf{u} \in \mathbb{R}^q such that \mathbf{y} = H\mathbf{u}.'
```

to form a certain set of vectors in \mathbb{R}^p , called the column space of the matrix H.

When put into plain words, the selection criterion (*) reads:

'y is a vector in \mathbb{R}^p which can be expressed as the product of H in the left and some vector in \mathbb{R}^q in the right.'

According to this 'selection criterion':

- Those vectors in \mathbb{R}^p resultant from multiplying H from the left to some vector in \mathbb{R}^q are collected.
- Those vectors in \mathbb{R}^p not resultant from multiplying H from the left to some vector in \mathbb{R}^q are 'discarded'.

For this reason, $\mathcal{C}(H)$ is simply the collection of all vectors in \mathbb{R}^p which can be 'expressed in the form' $H\mathbf{u}$, and only such vectors.

So very often the set $\mathcal{C}(H)$ is given the short-hand

 $\{H\mathbf{u} \mid \mathbf{u} \in \mathbb{R}^q\}.$

Further remark.

How to use the various versions of the definitions?

Always remember, whenever $\mathbf{v} \in \mathbb{R}^p$, the statements below mean the same thing:

(a) $\mathbf{v} \in \mathcal{C}(H)$.

(b) There exists some $\mathbf{u} \in \mathbb{R}^q$ such that $\mathbf{v} = H\mathbf{u}$.

According to this 'selection criterion':

- Those vectors in \mathbb{R}^p resultant from multiplying H from the left to some vector in \mathbb{R}^q are collected.
- Those vectors in \mathbb{R}^p not resultant from multiplying H from the left to some vector in \mathbb{R}^q are 'discarded'.

For this reason, $\mathcal{C}(H)$ is simply the collection of all vectors in \mathbb{R}^p which can be 'expressed in the form' $H\mathbf{u}$, and only such vectors.

So very often the set $\mathcal{C}(H)$ is given the short-hand

 $\{H\mathbf{u} \mid \mathbf{u} \in \mathbb{R}^q\}.$

Further remark.

How to use the various versions of the definitions?

Always remember, whenever $\mathbf{v} \in \mathbb{R}^p$, the statements below mean the same thing:

(a) $\mathbf{v} \in \mathcal{C}(H)$.

There exists some $\mathbf{u} \in \mathbb{R}^q$ such that $\mathbf{v} = H\mathbf{u}$. \mathbf{v} is a vector in \mathbb{R}^p . \mathbf{v} is a vector in \mathbb{R}^p .

2. Theorem (1). (Column space of a matrix as a 'subspace'.) Suppose H is a $(p \times q)$ -matrix. Then the statements below hold:

(1) $\mathbf{0}_p \in \mathcal{C}(H).$

(2) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$, if $\mathbf{x} \in \mathcal{C}(H)$ and $\mathbf{y} \in \mathcal{C}(H)$ then $\mathbf{x} + \mathbf{y} \in \mathcal{C}(H)$.

(3) For any $\mathbf{x} \in \mathbb{R}^p$, for any $\alpha \in \mathbb{R}$, if $\mathbf{x} \in \mathcal{C}(H)$ then $\alpha \mathbf{x} \in \mathcal{C}(H)$.

(4) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$, for any $\alpha, \beta \in \mathbb{R}$, if $\mathbf{x} \in \mathcal{C}(H)$ and $\mathbf{y} \in \mathcal{C}(H)$ then $\alpha \mathbf{x} + \beta \mathbf{y} \in \mathcal{C}(H)$.

3. Proof of Statements (1), (2), (3) of Theorem (1). Suppose H is a $(p \times q)$ -matrix.

(1) Note that $\mathbf{0}_p = H\mathbf{0}_q$, and $\mathbf{0}_q \in \mathbb{R}^q$.

Then $\mathbf{0}_p \in \mathcal{C}(H)$.

(2) Pick any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^p$. Suppose $\mathbf{x}, \mathbf{y} \in \mathcal{C}(H)$.

[Ask: What to verify? Answer: $\mathbf{x} + \mathbf{y} \in \mathcal{C}(H)$ '. According to definition, this reads: 'There exist some $\mathbf{w} \in \mathbb{R}^q$ such that $\mathbf{x} + \mathbf{y} = H\mathbf{w}$.' Further ask: How comes such a vector \mathbf{w} ? Answer: Make use of the information provided by ' $\mathbf{x} \in \mathcal{C}(H)$ ' and ' $\mathbf{y} \in \mathcal{C}(H)$ '.] By definition of $\mathcal{C}(H)$, there exist some $\mathbf{u}, \mathbf{v} \in \mathbb{R}^q$ such that $\mathbf{x} = H\mathbf{u}$ and $\mathbf{y} = H\mathbf{v}$. Now $\mathbf{x} + \mathbf{y} = H\mathbf{u} + H\mathbf{v} = H(\mathbf{u} + \mathbf{v})$. Since $\mathbf{u}, \mathbf{v} \in \mathbb{R}^q$, it happens that $\mathbf{u} + \mathbf{v} \in \mathbb{R}^q$. Then by the definition of $\mathcal{C}(H), \mathbf{x} + \mathbf{y} \in \mathcal{C}(H)$.

(3) Pick any
$$\mathbf{x} \in \mathbb{R}^p$$
. Pick any $\alpha \in \mathbb{R}$. Suppose $\mathbf{x} \in \mathcal{C}(H)$.

[Ask: What to verify? Answer. ' $\alpha \mathbf{x} \in \mathcal{C}(H)$ '. According to definition, this reads: 'There exist some $\mathbf{w} \in \mathbb{R}^q$ such that $\alpha \mathbf{x} = H\mathbf{w}$ '] By definition of $\mathcal{C}(H)$, there exist some $\mathbf{u} \in \mathbb{R}^q$ such that $\mathbf{x} = H\mathbf{u}$. Now $\alpha \mathbf{x} = \alpha H\mathbf{u} = H(\alpha \mathbf{u})$. Since $\mathbf{u}, \mathbf{v} \in \mathbb{R}^q$, it happens that $\alpha \mathbf{u} \in \mathbb{R}^q$.

Then by the definition of $\mathcal{C}(H)$, $\alpha \mathbf{x} \in \mathcal{C}(H)$.

4. An alternative way of visualizing the notion of *column space* is through the notions of *linear combination* and *span* (which will be introduced shortly).

Recall the definition for the notion of *linear combination*:

Let $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$ be vectors in \mathbb{R}^m .

Let **w** be a vector in \mathbb{R}^m .

We say **v** is a linear combination of $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$ if the statement (†) holds:

(†) There exist some real numbers $\alpha_1, \alpha_2, \cdots, \alpha_n$ such that

 $\mathbf{w} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2 + \dots + \alpha_n \mathbf{z}_n.$

The expression $\alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2 + \cdots + \alpha_n \mathbf{z}_n$ on its own is called the linear combination of the vectors $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$ and the scalars $\alpha_1, \alpha_2, \cdots, \alpha_n$.

5. Definition. (Span of a set of vectors in \mathbb{R}^m .) Let $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$ be ('finitely many') vectors in \mathbb{R}^m .

The span of (the set of vectors) $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$ is defined to be the set

 $\{\mathbf{y} \in \mathbb{R}^m : \mathbf{y} \text{ is a linear combination of } \mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n \}.$

We denote this set by Span $(\{\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n\})$ (or $\langle \{\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n\} \rangle$).

Remark.

Span $(\{\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n\})$ is constructed with the help of the method of specification, with 'selection criterion'

(\star) '**y** is a linear combination of $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$,'

when we collect those and only those vectors in \mathbb{R}^m which are linear combinations of $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$.

For this reason,

$$\mathsf{Span}\;(\{\mathbf{z}_1,\mathbf{z}_2,\cdots,\mathbf{z}_n\})$$

is simply the collection of all vectors in \mathbb{R}^m which can be 'expressed' as linear combinations of $\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_n$, and only such vectors.

Further remark.

How to use the various versions of the definitions?

Always remember, whenever $\mathbf{y} \in \mathbb{R}^m$, the statements below mean the same thing:

- (\sharp) **y** belongs to Span ({ z_1, z_2, \cdots, z_n }).
- ($\boldsymbol{\natural}$) \mathbf{y} is a linear combination of $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$.

(b) There exist some real numbers $\alpha_1, \alpha_2, \cdots, \alpha_n$ such that $\mathbf{y} = \alpha_1 \mathbf{z}_1 + \alpha_2 \mathbf{z}_2 + \cdots + \alpha_n \mathbf{z}_n$.

Further remark on terminologies and symbols.

 (a) In some textbooks, it is emphasized that the notion of *span* is defined on sets of vectors; hence the brackets '{', '}' are used in the notation.

(b) For convenience, we may read

$$\mathbf{\mathbf{\hat{y}}} \in \mathsf{Span} \ (\{\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n\})^{\prime}$$

as

'**y** is spanned by
$$\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$$
'.

When a set of vectors, say, V, is equal to the set Span $(\{\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n\})$, we may read this set equality as 'the set V is spanned by $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$ '.

6. With the help of Lemma (A) (from the handout *linear combinations*), we are going to set up a 'dictionary' between the notion of *span* and the notion of *column space*.

Recall Lemma (A):

Let A be an $(m \times n)$ -matrix, and **t** be a vector in \mathbb{R}^n .

Suppose that for each $j = 1, 2, \dots, n$, the *j*-th column of A is \mathbf{a}_j and the *j*-th entry of

$$\mathbf{t} \text{ is } t_j. \text{ (So } A = \begin{bmatrix} \mathbf{a}_1 | \mathbf{a}_2 | \cdots | \mathbf{a}_n \end{bmatrix} \text{ and } \mathbf{t} = \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_n \end{bmatrix}.)$$

Then $A\mathbf{t} = t_1\mathbf{a}_1 + t_2\mathbf{a}_2 + \cdots + t_n\mathbf{a}_n$.

7. Theorem (D). ('Dictionary' between the notion of span and the notion of column space.)

Let $\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q$ be vectors in \mathbb{R}^p , and H be a $(p \times q)$ -matrix.

Suppose that the *j*-th column of *H* is \mathbf{h}_j for each *j*. (So $H = [\mathbf{h}_1 | \mathbf{h}_2 | \cdots | \mathbf{h}_q]$.)

```
Then \mathcal{C}(H) = \text{Span} (\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q\}).
```

Remark.

The significance of Theorem (D) is that every statement about spans of collections of finitely many vectors can be translated into a statement about column spaces of matrices, and vice versa.

Further remark.

The equality $\mathcal{C}(H) = \mathsf{Span} (\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q\})$ is a set equality.

What such an equality means is that the statements $(\dagger), (\ddagger)$ below hold simultaneously:

(†) For any
$$\mathbf{y} \in \mathbb{R}^p$$
, if $\mathbf{y} \in \mathcal{C}(H)$ then $\mathbf{y} \in \mathsf{Span} (\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q\})$.

(‡) For any $\mathbf{y} \in \mathbb{R}^p$, if $\mathbf{y} \in \mathsf{Span} (\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q\})$ then $\mathbf{y} \in \mathcal{C}(H)$.

8. Proof of Theorem (D).

Let $\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q$ be vectors in \mathbb{R}^p , and H be a $(p \times q)$ -matrix. Suppose that the *j*-th column of H is \mathbf{h}_j for each *j*. Then $H = [\mathbf{h}_1 | \mathbf{h}_2 | \cdots | \mathbf{h}_q].$

[We verify the statements $(\dagger), (\ddagger)$:

- (†) For any $\mathbf{y} \in \mathbb{R}^p$, if $\mathbf{y} \in \mathcal{C}(H)$ then $\mathbf{y} \in \mathsf{Span}(\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q\})$. (†) Γ
- (‡) For any $\mathbf{y} \in \mathbb{R}^p$, if $\mathbf{y} \in \mathsf{Span} (\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q\})$ then $\mathbf{y} \in \mathcal{C}(H)$.

The arguments are given in two separate paragraphs, one for (\dagger) and the other (\ddagger) .]

[We verify (†): 'For any y ∈ ℝ^p, if y ∈ C(H) then y ∈ Span ({h₁, h₂, · · · , h_q}).']
Pick any y ∈ ℝ^p. Suppose y ∈ C(H).

[Ask: Is it true that $\mathbf{y} \in \mathsf{Span} (\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q\})$?]

By definition, there exists some $\mathbf{u} \in \mathbb{R}^q$ such that $\mathbf{y} = H\mathbf{u}$.

For each i, denote the *i*-th entry of **u** by u_i .

Then, by Lemma (A), $\mathbf{y} = u_1 \mathbf{h}_1 + u_2 \mathbf{h}_2 + \cdots + u_q \mathbf{h}_q$.

Therefore $\mathbf{y} \in \mathsf{Span} (\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q\})$

[We verify (‡): 'For any y ∈ ℝ^p, if y ∈ Span ({h₁, h₂, ..., h_q}) then y ∈ C(H).']
Pick any y ∈ ℝ^p. Suppose y ∈ Span ({h₁, h₂, ..., h_q}).
[Ask: Is it true that y ∈ C(H)?]

By definition, there exists some $u_1, u_2, \cdots, u_q \in \mathbb{R}$ such that $\mathbf{y} = u_1 \mathbf{h}_1 + u_2 \mathbf{h}_2 + \cdots + u_q \mathbf{h}_q$.

Define the vector
$$\mathbf{u}$$
 in \mathbb{R}^q by $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_q \end{bmatrix}$.

Then by Lemma (A), we have $\mathbf{y} = H\mathbf{u}$.

Therefore $\mathbf{y} \in \mathcal{C}(H)$.

It follows that $\mathcal{C}(H) = \text{Span}(\{\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_q\})$ holds.

9. Illustrations of the content of Theorem (D).

(a)
$$C\left(\begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 5 & 7 \\ 1 & 4 & 7 & 10 \end{bmatrix}\right) = \text{Span}\left(\left\{\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 3 \\ 5 \\ 7 \end{bmatrix}, \begin{bmatrix} 4 \\ 7 \\ 10 \end{bmatrix}\right\}\right)$$

(b) $C\left(\begin{bmatrix} 1 & 0 & 9 \\ 0 & 2 & 8 \\ 1 & 4 & 7 \\ 0 & 6 & 6 \\ 1 & 8 & 5 \end{bmatrix}\right) = \text{Span}\left(\left\{\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 4 \\ 6 \\ 8 \end{bmatrix}, \begin{bmatrix} 9 \\ 8 \\ 7 \\ 6 \\ 5 \end{bmatrix}\right\}\right)$

10. Theorem (2). (Span of vectors as a 'subspace'.)

Suppose $\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n$ are vectors in \mathbb{R}^m . Write $V = \text{Span}(\{\mathbf{z}_1, \mathbf{z}_2, \cdots, \mathbf{z}_n\})$. The statements below hold:

(1) $\mathbf{0} \in V$.

(2) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$, if $\mathbf{x} \in V$ and $\mathbf{y} \in V$ then $\mathbf{x} + \mathbf{y} \in V$.

(3) For any $\mathbf{x} \in \mathbb{R}^m$, for any $\alpha \in \mathbb{R}$, if $\mathbf{x} \in V$ then $\alpha \mathbf{x} \in V$.

(4) For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$, for any $\alpha, \beta \in \mathbb{R}$, if $\mathbf{x} \in V$ and $\mathbf{y} \in V$ then $\alpha \mathbf{x} + \beta \mathbf{y} \in V$.

Proof of Theorem (2). This is a consequence of Theorem (1) and Theorem (D).