
1. Definition. (Column space of a matrix.)
Let H be a (p× q)-matrix.
The column space of the matrix H is defined to be the set{

y ∈ Rp :
There exist some u ∈ Rq

such that y = Hu.

}
.

We denote this set by C(H).

Remark.
We are applying the method of specification, with ‘selection criterion’
(∗) ‘there exist some u ∈ Rq such that y = Hu.’
to form a certain set of vectors in Rp, called the column space of the matrix H .

When put into plain words, the selection criterion (∗) reads:
‘y is a vector in Rp which can be expressed as the product of H in the left and some
vector in Rq in the right.’
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According to this ‘selection criterion’:
• Those vectors in Rp resultant from multiplying H from the left to some vector in Rq are

collected.
• Those vectors in Rp not resultant from multiplying H from the left to some vector in Rq

are ‘discarded’.

For this reason, C(H) is simply the collection of all vectors in Rp which can be ‘expressed
in the form’ Hu, and only such vectors.

So very often the set C(H) is given the short-hand

{Hu | u ∈ Rq}.

Further remark.
How to use the various versions of the definitions?

Always remember, whenever v ∈ Rp, the statements below mean the same thing:

(a) v ∈ C(H).

(b) There exists some u ∈ Rq such that v = Hu.
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2. Theorem (1). (Column space of a matrix as a ‘subspace’.)
Suppose H is a (p× q)-matrix. Then the statements below hold:

(1) 0p ∈ C(H).

(2) For any x,y ∈ Rp, if x ∈ C(H) and y ∈ C(H) then x + y ∈ C(H).

(3) For any x ∈ Rp, for any α ∈ R, if x ∈ C(H) then αx ∈ C(H).

(4) For any x,y ∈ Rp, for any α, β ∈ R, if x ∈ C(H) and y ∈ C(H) then αx+βy ∈ C(H).

3. Proof of Statements (1), (2), (3) of Theorem (1).
Suppose H is a (p× q)-matrix.

(1) Note that 0p = H0q, and 0q ∈ Rq.

Then 0p ∈ C(H).
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(2) Pick any x,y ∈ Rp. Suppose x,y ∈ C(H).

[Ask: What to verify? Answer: ‘x + y ∈ C(H)’.
According to definition, this reads: ‘There exist some w ∈ Rq such that x + y = Hw.’
Further ask: How comes such a vector w?
Answer: Make use of the information provided by ‘x ∈ C(H)’ and ‘y ∈ C(H)’.]

By definition of C(H), there exist some u,v ∈ Rq such that x = Hu and y = Hv.

Now x + y = Hu +Hv = H(u + v). Since u,v ∈ Rq, it happens that u + v ∈ Rq.

Then by the definition of C(H), x + y ∈ C(H).

(3) Pick any x ∈ Rp. Pick any α ∈ R. Suppose x ∈ C(H).

[Ask: What to verify? Answer. ‘αx ∈ C(H)’.
According to definition, this reads: ‘There exist some w ∈ Rq such that αx = Hw ’]

By definition of C(H), there exist some u ∈ Rq such that x = Hu.

Now αx = αHu = H(αu). Since u,v ∈ Rq, it happens that αu ∈ Rq.

Then by the definition of C(H), αx ∈ C(H).
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4. An alternative way of visualizing the notion of column space is through the notions of
linear combination and span (which will be introduced shortly).

Recall the definition for the notion of linear combination:

Let z1, z2, · · · , zn be vectors in Rm.
Let w be a vector in Rm.
We say v is a linear combination of z1, z2, · · · , zn if the statement (†) holds:
(†) There exist some real numbers α1, α2, · · · , αn such that

w = α1z1 + α2z2 + · · · + αnzn.

The expression α1z1 + α2z2 + · · · + αnzn on its own is called the linear combination of
the vectors z1, z2, · · · , zn and the scalars α1, α2, · · · , αn.
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5. Definition. (Span of a set of vectors in Rm.)
Let z1, z2, · · · , zn be (‘finitely many’) vectors in Rm.

The span of (the set of vectors) z1, z2, · · · , zn is defined to be the set{
y ∈ Rm : y is a linear combination of z1, z2, · · · , zn

}
.

We denote this set by Span ({z1, z2, · · · , zn}) (or ⟨{z1, z2, · · · , zn}⟩).

Remark.
Span ({z1, z2, · · · , zn}) is constructed with the help of the method of specification, with
‘selection criterion’
(⋆) ‘y is a linear combination of z1, z2, · · · , zn,’
when we collect those and only those vectors in Rm which are linear combinations of
z1, z2, · · · , zn.

For this reason,
Span ({z1, z2, · · · , zn})

is simply the collection of all vectors in Rm which can be ‘expressed’ as linear combinations
of z1, z2, · · · , zn, and only such vectors.
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Further remark.
How to use the various versions of the definitions?
Always remember, whenever y ∈ Rm, the statements below mean the same thing:
(♯) y belongs to Span ({z1, z2, · · · , zn}).

(♮) y is a linear combination of z1, z2, · · · , zn.

(♭) There exist some real numbers α1, α2, · · · , αn such that y = α1z1 + α2z2 + · · ·+ αnzn.

Further remark on terminologies and symbols.
(a) In some textbooks, it is emphasized that the notion of span is defined on sets of vectors;

hence the brackets ‘{’, ‘}’ are used in the notation.
(b) For convenience, we may read

‘y ∈ Span ({z1, z2, · · · , zn})’
as

‘y is spanned by z1, z2, · · · , zn’.
When a set of vectors, say, V , is equal to the set Span ({z1, z2, · · · , zn}), we may read
this set equality as ‘the set V is spanned by z1, z2, · · · , zn’.
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6. With the help of Lemma (A) (from the handout linear combinations), we are going to set
up a ‘dictionary’ between the notion of span and the notion of column space.

Recall Lemma (A):
Let A be an (m× n)-matrix, and t be a vector in Rn.
Suppose that for each j = 1, 2, · · · , n, the j-th column of A is aj and the j-th entry of

t is tj. (So A =
[
a1 a2 · · · an

]
and t =


t1
t2
...
tn

.)

Then At = t1a1 + t2a2 + · · · + tnan.
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7. Theorem (D). (‘Dictionary’ between the notion of span and the notion of
column space.)
Let h1,h2, · · · ,hq be vectors in Rp, and H be a (p× q)-matrix.

Suppose that the j-th column of H is hj for each j. (So H =
[
h1 h2 · · · hq

]
.)

Then C(H) = Span ({h1,h2, · · · ,hq}).

Remark.
The significance of Theorem (D) is that every statement about spans of collections of finitely
many vectors can be translated into a statement about column spaces of matrices, and vice
versa.

Further remark.
The equality ‘C(H) = Span ({h1,h2, · · · ,hq})’ is a set equality.
What such an equality means is that the statements (†), (‡) below hold simultaneously:

(†) For any y ∈ Rp, if y ∈ C(H) then y ∈ Span ({h1,h2, · · · ,hq}).

(‡) For any y ∈ Rp, if y ∈ Span ({h1,h2, · · · ,hq}) then y ∈ C(H).

9



8. Proof of Theorem (D).
Let h1,h2, · · · ,hq be vectors in Rp, and H be a (p× q)-matrix.
Suppose that the j-th column of H is hj for each j. Then H =

[
h1 h2 · · · hq

]
.

[We verify the statements (†), (‡):
(†) For any y ∈ Rp, if y ∈ C(H) then y ∈ Span ({h1,h2, · · · ,hq}).
(‡) For any y ∈ Rp, if y ∈ Span ({h1,h2, · · · ,hq}) then y ∈ C(H).
The arguments are given in two separate paragraphs, one for (†) and the other (‡).]

• [We verify (†): ‘For any y ∈ Rp, if y ∈ C(H) then y ∈ Span ({h1,h2, · · · ,hq}).’]

Pick any y ∈ Rp. Suppose y ∈ C(H).

[Ask: Is it true that y ∈ Span ({h1,h2, · · · ,hq})?]

By definition, there exists some u ∈ Rq such that y = Hu.

For each i, denote the i-th entry of u by ui.

Then, by Lemma (A), y = u1h1 + u2h2 + · · · + uqhq.

Therefore y ∈ Span ({h1,h2, · · · ,hq})
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• [We verify (‡): ‘For any y ∈ Rp, if y ∈ Span ({h1,h2, · · · ,hq}) then y ∈ C(H).’]

Pick any y ∈ Rp. Suppose y ∈ Span ({h1,h2, · · · ,hq}).

[Ask: Is it true that y ∈ C(H)?]

By definition, there exists some u1, u2, · · · , uq ∈ R such that y = u1h1+u2h2+· · ·+uqhq.

Define the vector u in Rq by u =


u1
u2
...
uq

.

Then by Lemma (A), we have y = Hu.

Therefore y ∈ C(H).

It follows that C(H) = Span ({h1,h2, · · · ,hq}) holds.
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9. Illustrations of the content of Theorem (D).

(a) C


 1 2 3 4

1 3 5 7

1 4 7 10


 = Span



11
1

 ,

23
4

 ,

35
7

 ,

 4

7

10





(b) C




1 0 9

0 2 8

1 4 7

0 6 6

1 8 5



 = Span






1

0

1

0

1

 ,


0

2

4

6

8

 ,


9

8

7

6

5






10. Theorem (2). (Span of vectors as a ‘subspace’.)

Suppose z1, z2, · · · , zn are vectors in Rm. Write V = Span ({z1, z2, · · · , zn}).
The statements below hold:

(1) 0 ∈ V .
(2) For any x,y ∈ Rm, if x ∈ V and y ∈ V then x + y ∈ V .
(3) For any x ∈ Rm, for any α ∈ R, if x ∈ V then αx ∈ V .
(4) For any x,y ∈ Rm, for any α, β ∈ R, if x ∈ V and y ∈ V then αx + βy ∈ V .

Proof of Theorem (2). This is a consequence of Theorem (1) and Theorem (D).
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