MATH1030 Row equivalence in terms of multiplication by non-singular and invertible matrices.

1. According to Lemma (7) and Theorem (C):

(a) Each row-operation matrix is non-singular and invertible.
(b) The product of any (finitely many) row-operation matrices is non-singular and invertible.

(c) Every non-singular (and invertible) matrix is a product of row-operation matrices.
This allows us to establish a ‘dictionary’ between row-equivalence for general matrices and non-singularity.

2. Lemma (p).

Let A, B be (m x n)-matrices. Suppose A is row-equivalent to B. Then there exists some non-singular and invertible
(m x m)-square matrix H such that B = HA.

Proof of Lemma (u).
Let A, B be (m x n)-matrices. Suppose A is row-equivalent to B.

Then there is a sequence of row operations joining A to B:

A201—>CQ—>CQ—) """""" —>CN:B
p1 P2 p3 PN -1

in which the p;’s are the various row operations involved in this sequence.

For each k, denote by Hj, the row operation matrix corresponding to pg.

Then Cy = H1Cy, = H1A, C3 = HyCs, ..., Cn_1 = Hy_2Cn_9,and B=Cy = Hy_1Cn_1.
Therefore B = HA, in which H = Hy_1Hy_o--+- HoH;.

Then by Lemma () and Theorem (C), the matrix H is non-singular and invertible.

3. Lemma (v).

Let A, B be (m x n)-matrices. Suppose there exists some non-singular and invertible (m x m)-square matrix H such
that B = HA.

Then A is row-equivalent to B.
Proof of Lemma (v).

Let A, B be (m x n)-matrices. Suppose there exists some non-singular and invertible (m x m)-square matrix H such
that B = HA.

According to Theorem (C), there exist some exist some (m x m)-row-operation matrices Hq, Ha, -+, Hy_1 such
that H = HNleN72 e HQHl.

Define Cy = A, Co = H\Cy, C3 = HyCh, ..., Cn—1 = Hy 2Cn_2, Cn = Hy_1Cn_1.
Then, by deﬁnition, B=HA= HNleNfz s HQchl = HNleNfz R HQCQ == HNflcNfl = CN.
Denote the row operations corresponding to the respective row-operation matrices Hy, Ha, -+ , Hy_1 by p1,p2, - , PN -

Then, by definition, A, C5,Cs,--- ,Cn_1, B are joint by the row operations

A=C1—Cy—Cy—-vvvrnn — Cy = B.
P1 P2 P3 PN-—1

It follows that A is row-equivalent to B.

4. We combine Lemma (1) and Lemma (v) into Theorem (F) below.

Theorem (F). (Re-formulation of row-equivalence in terms of multiplication by non-singular and
invertible matrices.)

Let A, B be (m x n)-matrices.

The statements below are logically equivalent:

(a) A is row-equivalent to B.

(b) There exists some non-singular and invertible (m x m)-square matrix H such that B = HA.

Remark.  Such a re-formulation of row equivalence is useful in theoretical discussions because it brings in the
equality symbol ‘="

5. Illustrations.
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It happens that

—1R1+R —2R1+R —2R>+R —1R: —2R>+R —1R3+R
A:OI 1 202 1 303 2 304 305 2 106 3 2C7=B

Then B = HA, in which H is the (3 x 3)-square matrix given by the product H = Hg¢HsH,HsH>H,q, and
for each k = 1,2,3,4,5,6, the matrix Hj is the row operation matrix corresponding to the row operation py

joining Cy, to Cly1.
H is obtained as a resultant of the application of the sequence of row operations p1, p2, p3, P4, P5, P on I3:

100 1 00
Li=|0 10| 2t g _| 110
0 0 1 0 0 1
1 00
Z2RtRs g H, =] -1 1 0
2 0 1
1 0 0
2Retls g H =] -1 1 0
0 -2 1
Cin 1 0 0
_— HyH3HH, = | -1 1 0
0 2 -1
3 -2 0
2Rty g H HRHoH, = | -1 1 0
0 2 -1
3 -2 0
SLLLRREN H_H6H5H4H3H2H1_[—Ol —21 11]
0o 1 -2 1 10 1 2
(b) Let A=| -1 -2 3 —4| B=|01 -2 1
2 7 —12 11 00 0 O

It happens that

Ri< R —1R —2R1+R: —3R2+Rs —2R>+R
A:Cl 1 2C2 103 1 304 2 305 2 106:B

Then B = HA, in which H is the (3 x 3)-square matrix given by the product H = HsHyHsH>H,, and for
each k =1,2,3,4,5, the matrix Hy, is the row operation matrix corresponding to the row operation pj joining

Cy to Cly1-
H is obtained as a resultant of the application of the sequence of row operations p1, pa, p3, p4, p5 On I3:

10 07,0 0 1 0
L=[0 10|22  g—|100
00 1 0 0 1

0 -1 0
IR RiCN H3H2H1—[(1) g (1)1

0 -1 0
ELRELN H4H3H2H1:[ 1 g(l)]
2 ~1 0
Z2Rat H:H5H4H3H2H1:[ 13 (2) ?]
0 1 1 2 2 2 1010 1 10
() LetA=| 1 2 3 23 4| B={01100 -8
2 1 331 3 00011 5

It happens that

Ri<+>Ro C 2R1+R3 C —3R2+R3 C —2Ro+Rq O 2R3+R; C —2R3+Ro C, *B
2 3 4 5 6 7T —

A=C



Then B = HA, in which H is the (3 x 3)-square matrix given by the product H = H¢HsH,HsH>H,, and
for each k = 1,2,3,4,5,6, the matrix Hy is the row operation matrix corresponding to the row operation py

joining Cj to Cly1.
H is obtained as a resultant of the application of the sequence of row operations p1, p2, ps, p4, p5, p¢ on Is:

10 07 pon 010
L=|010|f2f g _|100
00 1 00 1
010
2htRs gH, =1 0 0
02 1
0 1 0
BetRs e H,H, =] 1 0 0
3 2 1
210
2t g H H.H =| 1 0 0
3 2 1
8 5 2
2Bt g H HsHoH,=| 1 0 0
-3 2 1
—2R3+R -8 5 2
2Retle [ = HyHsHyHsHoHy = 73 34 32
1 2 7 1 -1 10 -1 0 3
1 1 3 1 0 01 4 0 —1
dLetA=13 9 5 1 9 "B=|0o0 0 1 -2
1 -1 -5 2 0 00 0 0 0

It happens that

—1R1+R —3R1+R: —1R:1+R —1R
A=C, 1 202 1 303 1 404 205

4R2+R 3R2+R. R3<R. 4R3+R —2R2+R —1R3+R
ARyt R, CG 2+ Ry C7 3 4 08 3+11lq CS 2 1 Cg 3 1 ClO:B

Then B = HA, in which H is the (4 x 4)-square matrix given by the product H = HygHy -+ H3HyH;, and for
each k =1,2,3,---,9,10, the matrix Hy is the row operation matrix corresponding to the row operation py

joining Cy to Cly1.

H is obtained as a resultant of the application of the sequence of row operations p1, p2, p3,- - , p9, p1o o0 Iy4:
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—3R1+R3
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—1Rs5

4Ro+R3

3R2+R4
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4R3+R4

—2R2+ Ry

—1R3+R1
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1 0 0 0
-1 1 0 0
Hi=1 9 01 0
0 0 0 1
1 0 0 8
-1 1 0
Iyi=1 _3 01 0
0 0 0 1
1 0 0 8
1100
HsH>Hy = _3 ¢ 1 0
10 0 1
1 0 0 8
1 -1 0
H 3l = | 23 g 1 0
1 0 0 1
1 0 0 O
1 10 0
HsH H3H-Hy = | | _4 1 o
10 0 1
1 0 0 8
1 -1 0
HeH;H HsHoHy = | 1 _4 1
2 3 0 1
1 0 0 8
1 -1 0
H7H6H5H4H3H2H1 == 2 73 O 1
1 -4 1 0
1 0 0 0
1 -1 0 0
H8H7H6H5H4H3H2H1 == 2 _3 0 1
9 —-16 1 4
-1 2 0
1 -1 0
HyHgH;H;HsH,H;H H = 2 3 0
9 —-16 1
)
1
H = HygHyHsH7H¢H; HyHsHoHy = | 5
9
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