
MATH1030 Existence and uniqueness of solutions for a system of linear equations whose coefficient
matrix is a square matrix

1. Lemma (θ). (Invertibility as a sufficient condition for existence and uniqueness of solution for systems
of linear equations.)
Let A be an (n× n)-square matrix.
Suppose A is invertible.
Then, for any vector b in Rn, the system LS(A, b) has one and only one solution, namely, ‘x = A−1b’.
Proof of Lemma (θ).
Let A be an (n× n)-square matrix. Suppose A is invertible.

Then its matrix inverse A−1 is well-defined as an (n× n)-square matrix.

Pick any vector b in Rn. Note that A−1b is well-defined as a vector in Rn.

• We have A(A−1b) = (AA−1)b = Inb = b.
Hence ‘x = A−1b’ is a solution of the system LS(A, b).

• Suppose ‘x = v’ is a solution of the system LS(A, b).
[Ask: Can it happen that v fails to be A−1b? (We hope not.)]
Then b = Av. Therefore A−1b = A−1(Av) = (A−1A)v = Inv = v.

Hence ‘x = A−1b’ is the one and only one solution of the system LS(A, b).

2. Question. Is invertibility a necessary condition for existence and uniqueness of solution for systems of linear
equations?
What we are asking is whether the converse of Lemma (θ), as formulated below, is true:

‘Let A be an (n× n)-square matrix.
Suppose that, for any vector b in Rn, the system LS(A, b) has one and only one solution.
Then A is invertible.’

Answer. The answer to this question is yes.
Actually it takes ‘much less’ for a square matrix to be necessarily invertible. This is the point of Lemma (ι) and
Lemma (κ).

3. Lemma (ι).
Let A be an (n× n)-square matrix.
Suppose that, for any vector c in Rn, the system LS(A, c) has at most one solution.
Then A is invertible.
Lemma (κ).
Let A be an (n× n)-square matrix.
Suppose that, for any vector d in Rn, the system LS(A, d) has at least one solution.
Then A is invertible.

4. Proof of Lemma (ι).
Let A be an (n× n)-square matrix.
Suppose that, for any vector c in Rn, the system LS(A, c) has at most one solution.
By assumption, the homogeneous system LS(A, 0) has at most one solution.
Recall that LS(A, 0) has at least one solution, namely, the trivial solution.
Then LS(A, 0) has exactly one solution, namely, the trivial solution. Therefore, by Lemma (1), A is non-singular.
Hence, by Theorem (B), A is invertible.
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5. Proof of Lemma (κ).
Let A be an (n× n)-square matrix.
Suppose that, for any vector d in Rn, the system LS(A, d) has at least one solution.
[Ask: Can we write down a (n× n)-matrix which hopefully will be a matrix inverse of A?]
Denote by e1, e2, · · · , en the respective columns of In from left to right. (So In = [ e1 e2 · · · en ].)
By assumption, for each j = 1, 2, · · · , n, the system LS(A, ej) has at least one solution, say, ‘x = gj ’. So by
definition, Agj = ej .
Define G = [ g1 g2 · · · gn ]. We verify that AG = In:

• We have AG = A[ g1 g2 · · · gn ] = [ Ag1 Ag2 · · · Agn ] = [ e1 e2 · · · en ] = In.

Now by Theorem (A), G is non-singular. Therefore by Theorem (B), G is invertible. Furthermore, A is a matrix
inverse of G. (Why?) Hence A is also invertible (with G being a matrix inverse of A).

6. We can summarize our discussion above in Lemma (λ).
Lemma (λ).
Let A be an (n× n)-square matrix.
The statements below are logically equivalent:

(a) A is invertible.

(b) For any vector b in Rn, the system LS(A, b) has one and only one solution, namely, ‘x = A−1b’.
(c) For any vector c in Rn, the system LS(A, c) has at least one solution.
(d) For any vector d in Rn, the system LS(A, d) has at most one solution.

We combine Lemma (λ) and Theorem (C) to obtain an upgrade of Theorem (C) in the form of Theorem (E).

7. Theorem (E). (Various re-formulations for the notions of non-singularity and invertibility.)
Let A be an (n× n)-matrix. The statements below are logically equivalent:

(a) A is non-singular.
(b) For any vector v in Rn, if Av = 0 then v = 0.
(c) The trivial solution is the only solution of the homogeneous system LS(A, 0).
(d) A is row-equivalent to In.
(e) A is invertible.
(f) There exists some (n× n)-square matrix H such that HA = In.
(g) There exists some (n× n)-square matrix G such that AG = In.

(h) For any vector b in Rn, the system LS(A, b) has one and only one solution, namely, ‘x = A−1b’.
(i) For any vector c in Rn, the system LS(A, c) has at least one solution.
(j) For any vector d in Rn, the system LS(A, d) has at most one solution.

Now suppose A is non-singular, with a sequence of row operations

A = C1 −→
ρ1

C2 −→
ρ2

· · · · · · −→
ρp−2

Cp−1 −→
ρp−1

Cp = In,

and with Hk being the row-operation matrix corresponding to ρk for each k. Then [In|A−1] is the resultant of the
application of the same sequence of row operations ρ1, ρ2, · · · , ρp−1 starting from [A|In]:

[A|In] = [C1|In]−→
ρ1

[C2|H1]−→
ρ2

[C3|H2H1]−→
ρ3

· · · · · · −→
ρp−2

[Cp−1|Hp−2 · · ·H2H1]−→
ρp−1

[Cp|Hp−1 · · ·H2H1] = [In|A−1].

Moreover, A−1 and A are respectively given as products of row-operation matrices by

A−1 = Hp−1 · · ·H2H1, A = H1
−1H2

−1 · · ·Hp−1
−1.
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