1. Definition. (Invertibility.)

Let A be an $(n \times n)$ -square matrix.

- (a) Suppose B is a $(n \times n)$ -square matrix. Further suppose $BA = I_n$ and $AB = I_n$. Then we say B is a matrix inverse of A.
- (b) A is said to be invertible if and only if A has a matrix inverse.

2. Two (trivial) examples.

- (a) The identity matrix I_n is invertible, and a matrix inverse of it is I_n itself.
- (b) The zero $(n \times n)$ -square matrix is not invertible.

3. Lemma (α). (Uniqueness of matrix inverse.)

Let A be an $(n \times n)$ -square matrix.

Suppose B, C are both matrix inverses of A.

Then B = C.

Proof of Lemma (α).

Under the assumption, we have $BA = I_n$ and $AC = I_n$.

Then

$$B = BI_n = B(AC) = (BA)C = I_nC = C.$$

Remarks.

- From now on there is no problem using the article *the* in writing the words *the matrix* inverse of the invertible matrix blah-blah.
- For the same reason, it makes to label the matrix inverse of an invertible matrix, say, A, with something which involves the symbol 'A'.

From now on, we denote by A^{-1} the matrix inverse of such an invertible matrix A.

4. Lemma (β). (Product of matrix inverses.)

Let A, B be $(n \times n)$ -square matrices.

Suppose A, B are invertible.

Then the product AB is invertible with matrix inverse given by $(AB)^{-1} = B^{-1}A^{-1}$.

Proof of Lemma (β).

Under the assumption, we have $A^{-1}A = I_n$ and $AA^{-1} = I_n$.

Moreover, $B^{-1}B = I_n$ and $BB^{-1} = I_n$.

Write C = AB, and $D = B^{-1}A^{-1}$.

We have

$$DC = (B^{-1}A^{-1})(AB) = B^{-1}[A^{-1}(AB)] = B^{-1}[(A^{-1}A)B] = B^{-1}(I_nB) = B^{-1}B = I_n.$$

We also have

$$CD = (AB)(B^{-1}A^{-1}) = \cdots = I_n.$$

Therefore, by the definition of matrix inverse and invertibility, C is invertible with matrix inverse D.

Then AB is invertible, and its matrix inverse is given by $(AB)^{-1} = B^{-1}A^{-1}$.

Remark.

By mathematical induction, we can prove this generalization of Lemma (β) :

Let A_1, A_2, \dots, A_k be $(n \times n)$ -square matrices.

Suppose A_1, A_2, \cdots, A_k are invertible.

Then the product $A_1A_2\cdots A_k$ is invertible with matrix inverse given by

$$(A_1 A_2 \cdots A_k)^{-1} = A_k^{-1} \cdots A_2^{-1} A_1^{-1}.$$

5. Corollary to Lemma (β) .

Let A be an $(n \times n)$ -square matrix.

Suppose A is invertible.

Then, for each positive integer p, the matrix A^p is invertible with matrix inverse given by $(A^p)^{-1} = (A^{-1})^p$.

Proof. Exercise in mathematical induction.

6. Lemma (γ) .

- (a) Every row operation matrix is invertible.

 Its matrix inverse is the row operation matrix corresponding to its reverse row operation.
- (b) Suppose H_1, H_2, \dots, H_k are row-operation matrices, and

$$H = H_k \cdots H_2 H_1$$
.

Then H is invertible, and its matrix inverse is given by

$$H^{-1} = H_1^{-1} H_2^{-2} \cdots H_k^{-1}.$$

Proof of Lemma (γ) . [This is a straightforward calculation, though it requires patience.]

6. Lemma (γ) .

Importance of Item(a): Row-speration matrices constitute
an important type of invertible matrices.

- (a) Every row operation matrix is invertible.

 Its matrix inverse is the row operation matrix corresponding to its reverse row operation.
- (b) Suppose H_1, H_2, \dots, H_k are row-operation matrices, and $H = H_k \dots H_2 H_1$.

Then H is invertible, and its matrix inverse is given by

$$H^{-1} = H_1^{-1} H_2^{-2} \cdots H_k^{-1}.$$

Consequence of Item(a) and Lemma (B).

Proof of Lemma (γ) . [This is a straightforward calculation, though it requires patience.]

7. Lemma (δ). (Invertibility of matrix inverse.)

Let A be an $(n \times n)$ -square matrix.

Suppose A is invertible.

Then its matrix inverse A^{-1} is invertible, and the matrix inverse of A^{-1} is given by $(A^{-1})^{-1} = A$.

Proof of Lemma (δ) .

Under the assumption, we have $A^{-1}A = I_n$ and $AA^{-1} = I_n$.

Write B = A, and $C = A^{-1}$.

Since $AA^{-1} = I_n$, we have $BC = I_n$.

Since $A^{-1}A = I_n$, we have $CB = I_n$.

Therefore $BC = I_n$ and $CB = I_n$.

Then, by the definition of matrix inverse and invertibility, C is invertible with matrix inverse B.

Therefore A^{-1} is invertible and its matrix inverse is given by $(A^{-1})^{-1} = A$.

8. Lemma (ϵ). (Invertibility implies non-singularity.)

Let A be an $(n \times n)$ -square matrix.

Suppose A invertible.

Then A is non-singular, and its matrix inverse A^{-1} is non-singular and invertible.

Proof of Lemma (ϵ) .

Under the assumption, we have $A^{-1}A = I_n$ and $AA^{-1} = I_n$.

By Lemma (δ) , A^{-1} is invertible.

Since $A^{-1}A = I_n$, we conclude from Lemma (2) that A is non-singular.

Since $AA^{-1} = I_n$, we conclude from Lemma (2) that A^{-1} is non-singular.

Remark. Recall Lemma (2):

Let C be a $(p \times p)$ -square matrix.

Suppose there exists some $(p \times p)$ -square matrix J such that $JC = I_p$.

Then C is non-singular.

9. Lemma (ζ). (Non-singularity implies invertibility.)

Let A be an $(n \times n)$ -square matrix.

Suppose A non-singular.

Then A is invertible, and its matrix inverse A^{-1} is non-singular and invertible.

Proof of Lemma (ζ) .

Under the assumption, and according to Lemma (6), there exists some $(n \times n)$ -square matrix H such that H is non-singular, $HA = I_n$ and $AH = I_n$.

Now, by definition, A is invertible with its matrix inverse given by $A^{-1} = H$.

H is invertible by Lemma (δ) .

10. Theorem (B). (Equivalence of non-singularity and invertibility.)

Let A be an $(n \times n)$ -square matrix.

A is non-singular if and only if A is invertible.

Furthermore, if A is invertible, then its matrix inverse A^{-1} is non-singular and invertible with matrix inverse given by $(A^{-1})^{-1} = A$.

11. Corollary to Theorem (B).

Let A be an $(n \times n)$ -square matrix.

The statements below are logically equivalent:

- (a) A is invertible.
- (b) There exists some $(n \times n)$ -square matrix H such that $HA = I_n$.
- (c) There exists some $(n \times n)$ -square matrix G such that $AG = I_n$.

Proof of Corollary to Theorem (B).

- Suppose A is invertible. Then A has a unique matrix inverse A^{-1} . So it follows that $A^{-1}A = I_n$ and $AA^{-1} = I_n$.
- Suppose there exists some $(n \times n)$ -square matrix H such that $HA = I_n$. Then, by Lemma (2), A is non-singular. Therefore, by Theorem (B), A is invertible.
- Suppose there exists some $(n \times n)$ -square matrix G such that $AG = I_n$. Then, by Lemma (2), G is non-singular. Therefore, by Theorem (B), G is invertible. We verify that $G^{-1} = A$:

 We have $I_n = AG$.

 Then $G^{-1} = I_n G^{-1} = (AG)G^{-1} = A(GG^{-1}) = AI_n = A$.

 Then by Lemma (δ) , A is invertible.

Remark.

With the help of Theorem (B) and its corollary, together with the calculations leading towards Lemma (6), we can 'upgrade' Theorem (A) to obtain Theorem (C).

12. Theorem (C). (Various re-formulations for the notions of non-singularity and invertibility.)

Let A be an $(n \times n)$ -square matrix. The statements below are logically equivalent:

- (a) A is non-singular.
- (b) For any vector \mathbf{v} in \mathbb{R}^n , if $A\mathbf{v} = \mathbf{0}$ then $\mathbf{v} = \mathbf{0}$.
- (c) The trivial solution is the only solution of the homogeneous system $\mathcal{LS}(A, \mathbf{0})$.
- (d) A is row-equivalent to I_n .
- (e) A is invertible.
- (f) There exists some $(n \times n)$ -square matrix H such that $HA = I_n$.
- (g) There exists some $(n \times n)$ -square matrix G such that $AG = I_n$.

Now suppose A is non-singular, with a sequence of row operations

$$A = C_1 \xrightarrow{\rho_1} C_2 \xrightarrow{\rho_2} \cdots \xrightarrow{\rho_{p-2}} C_{p-1} \xrightarrow{\rho_{p-1}} C_p = I_n,$$

and with H_k being the row-operation matrix corresponding to ρ_k for each k.

Then $[I_n|A^{-1}]$ is the resultant of the application of the same sequence of row operations $\rho_1, \rho_2, \cdots, \rho_{p-1}$ starting from $[A|I_n]$:

$$[A|I_n] = [C_1|I_n] \xrightarrow{\rho_1} [C_2|H_1] \xrightarrow{\rho_2} [C_3|H_2H_1] \xrightarrow{\rho_3} \cdots \xrightarrow{\rho_{p-1}} [C_p|H_{p-1} \cdots H_2H_1] = [I_n|A^{-1}].$$

Moreover, A^{-1} and A are respectively given as products of row-operation matrices by

$$A^{-1} = H_{p-1} \cdots H_2 H_1,$$
 $A = H_1^{-1} H_2^{-1} \cdots H_{p-1}^{-1}.$

12. Theorem (C). (Various re-formulations for the notions of non-singularity and invertibility.)

Let A be an $(n \times n)$ -square matrix. The statements below are logically equivalent:

- (a) A is non-singular.
- (b) For any vector \mathbf{v} in \mathbb{R}^n , if $A\mathbf{v} = \mathbf{0}$ then $\mathbf{v} = \mathbf{0}$.
- (c) The trivial solution is the only solution of the homogeneous system $\mathcal{LS}(A, 0)$.
- (d) A is row-equivalent to I_n .
- (e) A is invertible.
- (f) There exists some $(n \times n)$ -square matrix H such that $HA = I_n$.
- (g) There exists some $(n \times n)$ -square matrix G such that $AG = I_n$.

Now suppose A is non-singular, with a sequence of row operations

$$A = C_1 \xrightarrow{\rho_1} C_2 \xrightarrow{\rho_2} \cdots \xrightarrow{\rho_{p-2}} C_{p-1} \xrightarrow{\rho_{p-1}} C_p = I_n,$$

and with H_k being the row-operation matrix corresponding to ρ_k for each k. ($C_{k+1} = H_k C_k$ for each k.)

Then $[I_n|A^{-1}]$ is the resultant of the application of the same sequence of row operations $\rho_1, \rho_2, \cdots, \rho_{p-1}$

starting from $[A|I_n]$:

$$[A|I_n] = [C_1|I_n] \xrightarrow{\rho_1} [C_2|H_1] \xrightarrow{\rho_2} [C_3|H_2H_1] \xrightarrow{\rho_3} \cdots \xrightarrow{\rho_{p-1}} [C_p|H_{p-1} \cdots H_2H_1] = [I_n|A^{-1}].$$

Moreover, A^{-1} and A are respectively given as products of row-operation matrices by

$$A^{-1} = H_{p-1} \cdots H_2 H_1, \qquad A = H_1^{-1} H_2^{-1} \cdots H_{p-1}^{-1}.$$

for saying a given square matrix is non-singular.

This tells us how non-singula matrices are 'built up' as products of row-operation matrice

This suggests how to determine whether asquare matrix is invertible, and to find its inverse.

n' Factorization of both
A and A into products
of row-operation matrices

13. Corollary to Theorem (C).

The statements below hold:

- (a) The matrix inverse of every invertible matrix is a product of finitely many row-operation matrices.
- (b) Every non-singular matrix is a product of finitely many row-operation matrices.
- 14. Recall what Lemma (β) says (when put in plain words): the product of any two invertible matrices is an invertible. We now upgrade Lemma (β) with the help of Theorem (B), to obtain Lemma (β') .

Lemma (β').

Let A, B be $(n \times n)$ -square matrices.

Suppose A, B are non-singular and invertible.

Then the product AB is non-singular and invertible.

15. The converse of Lemma (β') , as formulated below, is also true.

Lemma (η) .

Let A, B be $(n \times n)$ -square matrices.

Suppose the product AB is non-singular and invertible.

Then each of A, B is non-singular and invertible.

13. Corollary to Theorem (C).

The statements below hold:

- (a) The matrix inverse of every invertible matrix is a product of finitely many row-operation matrices.
- (b) Every non-singular matrix is a product of finitely many row-operation matrices.

 (In other words, every non-singular matrix can be factorized not row-operation matrices.)
- 14. Recall what Lemma (β) says (when put in plain words): the product of any two invertible matrices is an invertible. We now upgrade Lemma (β) with the help of Theorem (B), to obtain Lemma (β').

Lemma (β') .

Let A, B be $(n \times n)$ -square matrices.

Suppose A, B are non-singular and invertible.

Then the product AB is non-singular and invertible.

15. The converse of Lemma (β'), as formulated below, is also true.

Lemma (η) .

Let A, B be $(n \times n)$ -square matrices.

Suppose the product AB is non-singular and invertible.

Then each of A, B is non-singular and invertible.

Proof of Lemma (η) .

Suppose AB is non-singular and invertible.

We verify that B is non-singular:

• [This amounts to verifying the statement 'for any $\mathbf{v} \in \mathbb{R}^n$, if $B\mathbf{v} = \mathbf{0}$ then $\mathbf{v} = \mathbf{0}$.']

Pick any $\mathbf{v} \in \mathbb{R}^n$. Suppose $B\mathbf{v} = \mathbf{0}$.

Then $(AB)\mathbf{v} = A(B\mathbf{v}) = A\mathbf{0} = \mathbf{0}$.

Since AB is non-singular and $(AB)\mathbf{v} = \mathbf{0}$, we have $\mathbf{v} = \mathbf{0}$.

It follows that B is non-singular.

Now, by Theorem (B), the matrix B is invertible, with matrix inverse B^{-1} . Note that B^{-1} is invertible.

Note that $A = AI_n = A(BB^{-1}) = (AB)B^{-1}$.

Since AB is invertible and B^{-1} is invertible, A is also invertible according to Lemma (β). Now, by Theorem (B), the matrix A is non-singular.

Remark.

We may combine Lemma (β') and Lemma (η) to obtain Theorem (D).

16. **Theorem (D).**

Suppose A, B are $(n \times n)$ -square matrices.

Then the statements below are logically equivalent:

- (\sharp) Each of A, B is non-singular and invertible.
- (b) The product AB is non-singular and invertible.

17. Corollary to Theorem (D).

Suppose B_1, B_2, \dots, B_k are $(n \times n)$ -square matrices.

Then the statements below are logically equivalent:

- $(\sharp\sharp)$ Each of B_1, B_2, \cdots, B_k is non-singular and invertible.
- (bb) The product $B_1B_2\cdots B_k$ is non-singular and invertible.

Proof of Corollary to Theorem (D).

Apply Theorem (D) and mathematical induction.