
1. How to re-formulate the notion of non-singularity in terms of row opera-
tions and reduced row-echelon forms?

Suppose A is an (n× n)-square matrix.

Recall that according to the definition for the notion of non-singularity:
• A is non-singular if and only if the trivial solution is the only solution for the homogeneous

system LS(A, 0).

Now suppose A′ is the reduced row-echelon form which is row-equivalent to A, and recall
that:
• The respective solution sets of LS(A, 0) and LS(A′, 0) are the same as each other;

• Because A′ is a reduced row-echelon form, A′ is non-singular if and only if A′ = In.
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So we will have the mutually exclusive scenarios (†), (†′) below, dependent on whether A′

is the identity matrix or not:—

(†) Suppose A′ = In.
Then the trivial solution is the only solution for the homogeneous system LS(A, 0).
Therefore A is non-singular.

(†′) Suppose A′ ̸= In.
Then A′ is singular.
Therefore there is a non-trivial solution for the homogeneous system LS(A′, 0), which
is also a non-trivial solution for the homogeneous system LS(A, 0).
Hence A is singular.
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Summarizing the discussion above, we have obtained a re-formulation for the notion of
non-singularity in terms of reduced row-echelon forms.

2. Lemma (4).
Let A be a square matrix.
A is non-singular if and only if the reduced row-echelon form which is row-equivalent to A

is given by the identity matrix.

Remark.
In the light of the Lemma (3), we may state Lemma (4) in this way:

Let A be a square matrix.
The following statements are logically equivalent:

(a) A is non-singular.
(b) A is row equivalent to In.
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3. Example (⋆), as illustrations for Lemma (4).

(a) Let A =


1 2 1 2 1

−2 −3 0 −5 −1

1 1 0 2 1

−2 −3 −1 −3 −2

−1 −3 −1 −3 1

.

We find the reduced row-echelon form A′ which is row-equivalent to A, say, through
Gaussian elimination:

(α) : A = C1−→
ρ1

C2−→
ρ2

· · · −→
ρ17

C18−→
ρ18

C19 = A′

in which the ρk’s are given by:
k ρk k ρk k ρk
1 2R1 +R2 7 1R1 +R5 13 −1R4 +R1

2 −1R1 +R3 8 1R3 +R4 14 −1R4 +R2

3 2R1 +R4 9 −2R3 +R5 15 1R4 +R3

4 1R1 +R5 10 −2R2 +R1 16 −2R5 +R1

5 1R2 +R3 11 3R3 +R1 17 1R5 +R2

6 −1R2 +R4 12 −2R3 +R2 18 −1R5 +R3

It happens that A′ = I5. Then we may conclude that A is non-singular.
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(b) Let A =


1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

.

We find the reduced row-echelon form A′ which is row-equivalent to A, say, through
Gaussian elimination:

(α) : A = C1−→
ρ1

C2−→
ρ2

· · · −→
ρ11

C12−→
ρ12

C13 = A′

in which the ρk’s are given by:
k ρk k ρk k ρk
1 −1R1 +R2 5 R3 ↔ R4 9 −1R3 +R2

2 −1R1 +R3 6 1R3 +R4 10 1R4 +R1

3 R2 ↔ R4 7 (1/3)R4 11 1R4 +R2

4 1R2 +R4 8 −1R2 +R1 12 −2R4 +R3

It happens that A′ = I4. Then we may conclude that A is non-singular.
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(c) Let A =


1 1 1 1

1 0 −1 0

3 4 4 3

2 2 1 1

.

We find the reduced row-echelon form A′ which is row-equivalent to A, say, through Gaussian elimination:

(α) : A = C1−→
ρ1

C2−→
ρ2

· · · −→
ρ8

C9−→
ρ9

C10 = A′

in which the ρk’s are given by:

k ρk k ρk k ρk

1 −1R1 +R2 4 R2 ↔ R3 7 1R3 +R4

2 −3R1 +R3 5 1R2 +R3 8 −1R2 +R1

3 −2R1 +R4 6 −1R3 9 −1R3 +R2

It happens that A′ =


1 0 0 1

0 1 0 −1

0 0 1 1

0 0 0 0

. Then we may conclude that A is singular.

Remark. In fact, C8 is a row-echelon form with an entire row of zeros. We can stop there and conclude
that A is singular. (Why?)
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4. How to re-formulate the notion of non-singularity in terms of matrix mul-
tiplication?

Let A be an (n × n)-square matrix, and A′ be the reduced row-echelon form which is
row-equivalent to A. We make some observations with the help of the ‘dictionary’ between
row operations and row-operation matrices:

(a) For such matrices A,A′, we have some sequence of row operations joining A to A′:

A = C1−→
ρ1

C2−→
ρ2

· · · · · · −→
ρp−2

Cp−1−→
ρp−1

Cp = A′.

According to the ‘dictionary’ between row operations and row-operation matrices, for
each j, there is some (unique) (n × n)-square matrix Hj, namely, the row operation
matrix for ρj, such that Cj+1 = HjCj.

Then
A′ = Cp = Hp−1Cp−1 = Hp−1Hp−2Cp−2 = · · · = Hp−1 · · ·H2H1A.
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(b) Now further suppose A is non-singular.

Then, by Lemma (4), A′ = In.

Therefore there exist some (n× n)-square matrix H , namely,

H = Hp−1 · · ·H2H1,

such that HA = In.

We summarize the discovery in the above discussion in the form of Lemma (5).
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5. Lemma (5). (Converse of Lemma (2).)
Let A be an (n× n)-square matrix.
Suppose A is non-singular.
Then there exists some (n× n)-square matrix H such that HA = In.

Remark. Why do we call Lemma (5) a ‘converse of Lemma (2)’?

It is because Lemma (2) reads as:
Let A be an (n× n)-square matrix.
Suppose there exists some (n× n)-square matrix H such that HA = In.
Then A is non-singular.

Combining Lemma (1), Lemma (2), Lemma (4) and Lemma (5), we obtain Theorem (A).
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6. Theorem (A). (Re-formulation of non-singularity in terms of row opera-
tions, reduced row-echelon forms and matrix multiplication.)

Let A be an (n× n)-square matrix.

The statements below are logically equivalent:

(a) A is non-singular.
(b) For any vector v in Rn, if Av = 0 then v = 0.
(c) The trivial solution is the only solution of the homogeneous system LS(A, 0).
(d) A is row-equivalent to In.
(e) There exists some (n× n)-square matrix H such that HA = In.
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7. Towards the notion of invertibility.
Now indeed suppose A is a non-singular (n×n)-square matrix, which, according to Theorem
(A), will satisfy HA = In for some appropriate (n× n)-square matrix H .

(a) Question.
How to write down such a matrix H explicitly?

Answer.
According to our discussion leading up to Lemma (5), such a matrix H can be obtained
as the product

H = Hp−1 · · ·H2H1

in which each Hj is the row operation matrix corresponding to the row operation ρj in
some sequence of row operations joining A to In:

(α) : A = C1−→
ρ1

C2−→
ρ2

· · · · · · −→
ρp−2

Cp−1−→
ρp−1

Cp = In.
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(b) Further question.
But can we obtain H without multiplying so many matrices together?

Answer to further question.
Yes. How?
Write H = Hp−1 · · ·H2H1In (as a sleight of hand), and think of how to interpret this
product in terms of row operations, according to the ‘dictionary’ between row operations
and row operation matrices.

H1 is the resultant of the application of the row operation ρ1 on In.

H2H1 is the resultant of the application of the row operation ρ2 on H1.

H3H2H1 is the resultant of the application of the row operation ρ3 on H2H1.

So forth and so on.

H is therefore the resultant of the sequence of row operations

(β) : In−→
ρ1

H1−→
ρ2

H2H1−→
ρ3

· · · · · · −→
ρp−2

Hp−2 · · ·H2H1−→
ρp−1

Hp−1 · · ·H2H1 = H.
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(c) Bonus.
Again look at the sequence

(β) : In−→
ρ1

H1−→
ρ2

H2H1−→
ρ3

· · · · · · −→
ρp−2

Hp−2 · · ·H2H1−→
ρp−1

Hp−1 · · ·H2H1 = H.

This tells us immediately that:
• In is row-equivalent to the (n× n)-square matrix H , and hence
• the (n× n)-square matrix H is also row-equivalent to In.

Then, by Theorem (A), the statements below all hold immediately and simultaneously
for this matrix H :
• H is non-singular.
• For any vector u in Rn, if Hu = 0 then u = 0.
• The trivial solution is the only solution of the homogeneous system LS(H, 0).
• There exists some (n× n)-square matrix G such that GH = In.

So now we know that HA = In, and some matrix G satisfies GH = In.
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(d) Question.
What is the matrix G?

Answer.
The matrix G can be nothing but A itself.

Justification:
For such matrices A,G,H , we have G = GIn = G(HA) = (GH)A = InA = A.

Extra bonus. Therefore, for the same matrices A,H , it happens not only the equality
HA = In holds, but also the equality AH = In holds.

We have obtained something unexpected discovery from the ‘practical problem’ of comput-
ing the matrix H which satisfies HA = In for the non-singular matrix A. We formulate
this discovery as Lemma (6).

8. Lemma (6).
Let A be an (n× n)-square matrix.
Suppose A non-singular.
Then there exists some (n × n)-square matrix H such that H is non-singular, HA = In
and AH = In.

14





Remark. The converse of Lemma (6) is the statement (♯):
(♯) Let A be an (n× n)-square matrix.

Suppose there exists some (n×n)-square matrix H such that H is non-singular, HA = In
and AH = In.
Then A non-singular.

The statement (♯) is certainly true, by virtue of Theorem (A).

But how about statement (♭) below?
(♭) Let A be an (n× n)-square matrix.

Suppose there exists some (n× n)-square matrix H such that AH = In.
Then A non-singular.

We are not so sure at this point, as we are assuming ‘less’ in Statement (♭) then in Statement
(♯).
It will transpire that Statement (♭) is true as well, after more work is done.
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9. Example (⋆⋆), as an illustration for Lemma (6).

Recall Example (⋆). Let A =


1 2 1 2 1

−2 −3 0 −5 −1

1 1 0 2 1

−2 −3 −1 −3 −2

−1 −3 −1 −3 1

 .

We have the sequence of row operations

(α) : A = C1−→
ρ1

C2−→
ρ2

· · · −→
ρ17

C18−→
ρ18

C19 = A′,

in which the row operations ρk and the corresponding row-operation matrices Hk are given
by:

k ρk Hk k ρk Hk k ρk Hk

1 2R1 +R2 I5 + 2E5,5
2,1 7 1R1 +R5 I5 + E5,5

5,2 13 −1R4 +R1 I5 − 1E5,5
1,4

2 −1R1 +R3 I5 − E5,5
3,1 8 1R3 +R4 I5 + E5,5

4,3 14 −1R4 +R2 I5 − E5,5
2,4

3 2R1 +R4 I5 + 2E5,5
4,1 9 −2R3 +R5 I5 − 2E5,5

5,3 15 1R4 +R3 I5 + E5,5
3,4

4 1R1 +R5 I5 + E5,5
5,1 10 −2R2 +R1 I5 − 2E5,5

1,2 16 −2R5 +R1 I5 − 2E5,5
1,5

5 1R2 +R3 I5 + E5,5
3,2 11 3R3 +R1 I5 + 3E5,5

1,3 17 1R5 +R2 I5 + E5,5
2,5

6 −1R2 +R4 I5 − E5,5
4,2 12 −2R3 +R2 I5 − 2E5,5

2,3 18 −1R5 +R3 I5 − E5,5
3,5
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It happens that
I5 = A′ = C19 = H18C18 = H18 · · ·H2H1A.

The matrix
H = H18C18 = H18 · · ·H2H1

is the resultant of the application of the row operations ρ1, ρ2, · · · , ρ18 on I5, and is explicitly
given by

H =


−3 3 6 −1 −2

0 −2 −5 −1 1

1 2 4 1 −1

1 0 1 1 0

1 −1 −2 0 1

 .

It so happens that H is non-singular, HA = I5 and AH = I5.
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