
MATH1030 Non-singular matrices
1. Reminder on notations: Rn stands for the set of all (column) vectors with n entries.

Recall the definition for the notion of null space:
Let A be an (m×n)-matrix. The null space of A is defined to be the set {v ∈ Rn : Av = 0}. It is denoted by N (A).
In terms of system of linear equations, N (A) is the solution set of the homogeneous system LS(A, 0).

2. Definition. (Non-singular matrices and singular matrices.)
Let C be a (p× p)-square matrix.

(a) C is said to be non-singular if N (C) = {0}.
(b) C is said to be singular if C is not non-singular.

Remarks.
(a) We don’t talk about non-singularity for non-square matrices.
(b) The statement ‘N (C) = {0}’ in the context of this definition for the notion of non-singular matrices is a set

equality.
The correct (and formal) way to understand the equality ‘N (C) = {0}’ is that it is a ‘short-hand’ for this
passage:

Both statements (†), (‡) are true:
(†) For any x ∈ Rp, if x ∈ N (C) then x ∈ {0}.
(‡) For any x ∈ Rp, if x ∈ {0} then x ∈ N (C).

Because ‘x ∈ {0}’ is just a (clumsy) re-formulation of ‘x = 0’, the statement (‡) is trivially true by virtue of
the properties of matrix multiplication, and it can be safely ignored. The essential mathematical content in
the statement ‘N (C) = {0}’ is the statement (†).

(c) There are various (direct) re-formulations (according to definition) for the statement ‘the (p×p)-square matrix
C is non-singular’. Dependent on the concrete problem we are dealing with, one of them may be much easier
to use than any other.

3. Lemma (1). (Simple re-formulations of the notion of non-singularity.)
Let C be a (p× p)-square matrix. The statements below are logically equivalent:

(♢) N (C) = {0}.
(♣) 0 is the only vector in the null space of C.
(♡) For any vector v ∈ Rp, if Cv = 0 then v = 0.
(♠) The trivial solution is the only solution for the homogeneous system LS(C, 0).

Remark. Corresponding to the statement Lemma (1), we may give various (direct) re-formulations (according
to definition) for the statement ‘the (p× p)-square matrix C is singular’. Dependent on the concrete problem we are
dealing with, one of them may be much easier to use than any other:

Let C be a (p× p)-square matrix. The statements below are logically equivalent:
(∼♢) N (C) ̸= {0}.
(∼♣) There is a non-zero vector in the null space of C.
(∼♡) There is some v ∈ Rp such that v ̸= 0 and Cv = 0.
(∼♠) There is some non-trivial solution for the homogeneous system LS(C, 0).

4. Examples of non-singular matrices.

(a) Let A =
[
2 3
1 −1

]
. We verify that A is non-singular.

• What to check? ‘N (A) = {0}’.
• What easiest to check? ‘The trivial solution is the only solution for the homogeneous system LS(A, 0)’.
• Detail of argument:

We find the reduced row-echelon form A′ which is row-equivalent to A by applying row operations:

A −→ · · · → A′ = I2.

(Fill in the detail of the calculations.)
It follows that the only solution for LS(A, 0) is the trivial solution ‘x = 0’.
Hence A is non-singular.
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(b) Let A =

[ 1 2 2
1 3 3
2 6 5

]
. We verify that A is non-singular.

• What to check? ‘N (A) = {0}’.
• What easiest to check? ‘The trivial solution is the only solution for the homogeneous system LS(A, 0)’.

How to proceed?

(c) Let A =

[ −7 −6 −12
5 5 7
1 0 4

]
. We verify that A is non-singular.

• What to check? What easiest to check? How to proceed?

5. Examples of singular matrices.

(a) Let A =

[ 1 −5 3
2 −4 1
1 1 2

]
. We verify that A is singular.

• What to check? ‘N (A) ̸= {0}’.
• What easiest to check? ‘There is a non-trivial solution for the homogeneous system LS(A, 0)’.
• Detail of argument:

We find the reduced row-echelon form A′ which is row-equivalent to A by applying row operations:

A −→ · · · → A′ =

[
1 0 −7/6
0 1 −5/6
0 0 0

]

(Fill in the detail of the calculations.)

It follows that ‘x =

[
7/6
5/6
1

]
’ is a non-trivial solution for LS(A, 0).

Hence A is singular.

(b) Let A =

[ 1 −1 2
2 1 1
1 1 0

]
. We verify that A is singular.

• What to check? ‘N (A) ̸= {0}’.
• What easiest to check? ‘There is a non-trivial solution for the homogeneous system LS(A, 0)’. How to

proceed?

(c) Let A =

[ 0 1 −2
−1 −2 3
2 7 −12

]
. We verify that A is singular.

• What to check? What easiest to check? How to proceed?

6. Lemma (2). (Sufficiency criterion for non-singularity in terms of matrix multiplication.)
Let C be a (p× p)-square matrix.
Suppose there exists some (p× p)-square matrix J such that JC = Ip.
Then C is non-singular.
Proof of Lemma (2).
Let C be a (p× p)-square matrix.
Suppose there exists some (p× p)-square matrix J such that JC = Ip.

[Ask: What to check? ‘C is non-singular’.
Which formulation is easiest to use? ‘For any v ∈ Rp, if Cv = 0 then v = 0.’
Now ask: How to proceed?]

Pick any v ∈ Rp. Suppose Cv = 0. [Try to deduce: ‘v = 0.’]
By assumption JC = Ip. Then (JC)v = Ipv = v.
Recall that Cv = 0. Then v = (JC)v = J(Cv) = J0 = 0.
[We have successfully deduced ‘For any v ∈ Rp, if Cv = 0 then v = 0.’]
It follows that C is non-singular.

7. Natural questions to ask, as follow-up to Lemma (2).

(a) The converse of Lemma (2) reads:
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Let C be a (p× p)-square matrix.
Suppose C is non-singular.
Then there exists some (p× p)-square matrix J such that JC = Ip.

Question. Is the converse of Lemma (2) true?
Answer. It will turn out to be a true statement. (But to see this, a lot of work needs to be done first.)

(b) The statement (♯) is a generalization of Lemma (2):
(♯) Let C be a (p× q)-square matrix.

Suppose there exists some (q × p)-square matrix J such that JC = Iq.
Then N (C) = {0}.

Question. Is the statement (♯) true?
Answer. Yes. (How to prove the answer? Exercise.)

8. More examples of non-singular matrices.

(a) In is non-singular.
(b) Every permutation matrix is non-singular.

An (n× n)-matrix for which there is exactly one 1 in each row and each column, and every other entry is 0 is
called a permutation matrix.
Examples:

•
[
1 0
0 1

]
,
[
0 1
1 0

]
•

[ 1 0 0
0 1 0
0 0 1

]
,
[ 0 1 0

0 0 1
1 0 0

]
,
[ 0 0 1

1 0 0
0 1 0

]
,
[ 0 1 0

1 0 0
0 0 1

]
,
[ 0 0 1

0 1 0
1 0 0

]
,
[ 1 0 0

0 0 1
0 1 0

]
,

(c) Every orthogonal matrix is non-singular.
Why? Recall definition: An (n× n)-square matrix C is orthogonal if CtC = CCt = In.
Now what does Lemma (1) say?

(d) Every upper uni-triangular matrix is non-singular. (Reason: Lemma (2).) Examples:

• A =
[
1 α
0 1

]
.

• B =

[
1 α β
0 1 γ
0 0 1

]
.

• C =

 1 α β γ
0 1 δ ϵ
0 0 1 η
0 0 0 1

.

A square matrix for which all diagonal entries are 1 and all entries below the diagonal are 0 is called an upper
uni-triangular matrix.

9. More examples of singular matrices.

(a) The zero square matrix is singular.
(b) Every strictly upper triangular matrix is singular. Examples:

• A =
[
0 α
0 0

]
.

• B =

[
0 α β
0 0 γ
0 0 0

]
.

• C =

 0 α β γ
0 0 δ ϵ
0 0 0 η
0 0 0 0

.

A square matrix for which all diagonal entries and all entries below the diagonal are 0 is called a strictly upper
triangular matrix.

(c) Every square matrix with an entire column of 0’s is singular.
Illustration through (4× 4)-square matrices:

• Suppose A =

 0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

. We claim that A is singular. How to see this?
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Can we name a non-zero vector v in R4 for which Av = 0?

Yes, we take v =

10
0
0

. Then Av = 0.

• How about A =

 ∗ 0 ∗ ∗
∗ 0 ∗ ∗
∗ 0 ∗ ∗
∗ 0 ∗ ∗

? Or A =

 ∗ ∗ 0 ∗
∗ ∗ 0 ∗
∗ ∗ 0 ∗
∗ ∗ 0 ∗

? Or A =

 ∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0

?

Question. How about an (n× n)-square matrices whose entries in the j-th column are all 0?
(d) Every square matrix with an entire row of 0’s is singular.

Illustration through (4× 4)-matrices:

• Suppose A =

[ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 0

]
. We claim that A is singular. How to see this?

Apply Gaussian elimination
A −→ ... −→ A′

to obtain the reduced row-echelon form A′ which is row-equivalent to A.

The bottom row of A′ is a row of 0’s. So A′ =

[ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆
0 0 0 0

]
.

The rank of A′ is at most 3. The homogeneous system LS(A′, 0) will have a non-trivial solution, say,
‘x = v’, which will also be a non-trivial solution of the homogeneous system LS(A, 0).
Therefore A is singular.

• How about A =

[ 0 0 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

]
? Or A =

[ ∗ ∗ ∗ ∗
0 0 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

]
? Or A =

[ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 0
∗ ∗ ∗ ∗

]
?

Question. How about an (n× n)-square matrices whose entries in the i-th row are all 0?

10. Lemma (3). (Special role of identity matrix amongst reduced row-echelon forms.)
Let A be an (n× n)-square matrix.
Suppose A is a reduced row-echelon form.
Then A is non-singular if and only if A = In.
Remark. Lemma (3) tells us that In is the only (n × n)-square matrix which is simultaneously a reduced
row-echelon form and a non-singular matrix. Every reduced row-echelon form which is not In is singular.
Proof of Lemma (3).
Let A be an (n× n)-square matrix.
Suppose A is a reduced row-echelon form.

• Suppose A = In. Then A is non-singular.
• Suppose A is non-singular.

Note that there are r pivot columns in A, where r is the rank of A. By definition, r ≤ n.
Then A reads as 

1 · · · 0 · · · · · · 0 · · ·
0 · · · 1 · · · · · · 0 · · ·
...

...
...

0 · · · 0 · · · · · · 1 · · ·
· · · all 0’s · · ·
...

...
...

· · · all 0’s · · ·


We claim that r = n:

Suppose it were true that r < n. Then, because the number of leading ones is strictly smaller than the
number of columns, it would happen that some columns of A would fail to be a pivot column. Furthermore,
because there is the same number of rows as of columns, some rows of A would fail to contain a leading
one.
Now it would happen that there was at least one row of 0’s in A. Then A would be singular. Contradiction
arises.

Therefore r = n is the only possibility. Then each column of A is a pivot column. Hence A = In.
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