
1. Reminder on notations: Rn stands for the set of all (column) vectors with n entries.
Recall the definition for the notion of null space:

Let A be an (m× n)-matrix.
The null space of A is defined to be the set {v ∈ Rn : Av = 0}.
It is denoted by N (A).

In terms of system of linear equations, N (A) is the solution set of the homogeneous system
LS(A, 0).

2. Definition. (Non-singular matrices and singular matrices.)
Let C be a (p× p)-square matrix.

(a) C is said to be non-singular if
N (C) = {0}.

(b) C is said to be singular if C is not non-singular.
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Remarks.
(a) We don’t talk about non-singularity for non-square matrices.

(b) The statement ‘N (C) = {0}’ in the context of this definition for the notion of non-
singular matrices is a set equality.

The correct (and formal) way to understand the equality ‘N (C) = {0}’ is that it is a
‘short-hand’ for this passage:

Both statements (†), (‡) are true:
(†) For any x ∈ Rp, if x ∈ N (C) then x ∈ {0}.
(‡) For any x ∈ Rp, if x ∈ {0} then x ∈ N (C).

Because ‘x ∈ {0}’ is just a (clumsy) re-formulation of ‘x = 0’, the statement (‡) is
trivially true by virtue of the properties of matrix multiplication, and it can be safely
ignored.
The essential mathematical content in the statement ‘N (C) = {0}’ is the statement
(†).

(c) There are various (direct) re-formulations (according to definition) for the statement ‘the
(p × p)-square matrix C is non-singular’. Dependent on the concrete problem we are
dealing with, one of them may be much easier to use than any other.
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3. Lemma (1). (Simple re-formulations of the notion of non-singularity.)
Let C be a (p× p)-square matrix. The statements below are logically equivalent:

(♢)N (C) = {0}.
(♣) 0 is the only vector in the null space of C.
(♡) For any vector v ∈ Rp, if Cv = 0 then v = 0.
(♠) The trivial solution is the only solution for the homogeneous system LS(C, 0).

Remark. Corresponding to the statement Lemma (1), we may give various (direct)
re-formulations (according to definition) for the statement

‘the (p× p)-square matrix C is singular’.

Dependent on the concrete problem we are dealing with, one of them may be much easier
to use than any other:

Let C be a (p× p)-square matrix. The statements below are logically equivalent:
(∼♢)N (C) ̸= {0}.
(∼♣) There is a non-zero vector in the null space of C.
(∼♡) There is some v ∈ Rp such that v ̸= 0 and Cv = 0.
(∼♠) There is some non-trivial solution for the homogeneous system LS(C, 0).
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4. Examples of non-singular matrices.

(a) Let A =

[
2 3

1 −1

]
. We verify that A is non-singular.

• What to check?
‘N (A) = {0}’.

• What easiest to check?
‘The trivial solution is the only solution for the homogeneous system LS(A, 0)’.

• Detail of argument:
We find the reduced row-echelon form A′ of A by applying row operations:

A −→ · · · → A′ = I2.

(Fill in the detail of the calculations.)
It follows that the only solution for LS(A, 0) is the trivial solution ‘x = 0’.
Hence A is non-singular.
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(b) Let A =

 1 2 2

1 3 3

2 6 5

. We verify that A is non-singular.

• What to check?
‘N (A) = {0}’.

• What easiest to check?
‘The trivial solution is the only solution for the homogeneous system LS(A, 0)’.

• How to proceed?

(c) Let A =

 −7 −6 −12

5 5 7

1 0 4

. We verify that A is non-singular.

• What to check? What easiest to check? How to proceed?
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5. Examples of singular matrices.

(a) Let A =

 1 −5 3

2 −4 1

1 1 2

. We verify that A is singular.

• What to check?
‘N (A) ̸= {0}’.

• What easiest to check?
‘There is a non-trivial solution for the homogeneous system LS(A, 0)’.

• Detail of argument:
We find the reduced row-echelon form A′ of A by applying row operations:

A −→ · · · → A′ =

 1 0 −7/6

0 1 −5/6

0 0 0



It follows that ‘x =

7/65/6

1

’ is a non-trivial solution for LS(A, 0).

Hence A is singular.
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(b) Let A =

 1 −1 2

2 1 1

1 1 0

. We verify that A is singular.

• What to check?
‘N (A) ̸= {0}’.

• What easiest to check?
‘There is a non-trivial solution for the homogeneous system LS(A, 0)’.

• How to proceed?

(c) Let A =

 0 1 −2

−1 −2 3

2 7 −12

. We verify that A is singular.

• What to check? What easiest to check? How to proceed?
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6. Lemma (2). (Sufficiency criterion for non-singularity in terms of matrix
multiplication.)
Let C be a (p× p)-square matrix.
Suppose there exists some (p× p)-square matrix J such that JC = Ip.
Then C is non-singular.
Proof.
Let C be a (p× p)-square matrix.
Suppose there exists some (p× p)-square matrix J such that JC = Ip.

[Ask: What to check? ‘C is non-singular’.
Which formulation is easiest to use?

‘For any v ∈ Rp, if Cv = 0 then v = 0.’
Now ask: How to proceed?]

Pick any v ∈ Rp. Suppose Cv = 0. [Try to deduce: ‘v = 0.’]
By assumption JC = Ip. Then (JC)v = Ipv = v.
Recall that Cv = 0. Then v = (JC)v = J(Cv) = J0 = 0.
[We have successfully deduced ‘For any v ∈ Rp, if Cv = 0 then v = 0’.]
It follows that C is non-singular.
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7. Natural questions to ask, as follow-up to Lemma (2).
(a) The converse of Lemma (2) reads:

Let C be a (p× p)-square matrix.
Suppose C is non-singular.
Then there exists some (p× p)-square matrix J such that JC = Ip.

Question. Is the converse of Lemma (2) true?
Answer. It will turn out to be a true statement. (But to see this, a lot of work needs
to be done first.)

(b) The statement (♯) is a generalization of Lemma (2):
(♯) Let C be a (p× q)-square matrix.

Suppose there exists some (q × p)-square matrix J such that JC = Iq.
Then N (C) = {0}.

Question. Is the statement (♯) true?
Answer. Yes. (How to prove the answer? Exercise.)
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8. More examples of non-singular matrices.
(a) In is non-singular.

(b) Every permutation matrix is non-singular.

An (n × n)-matrix for which there is exactly one 1 in each row and each column, and
every other entry is 0 is called a permutation matrix.

Examples:

•
[
1 0

0 1

]
,
[
0 1

1 0

]

•

 1 0 0

0 1 0

0 0 1

,

 0 1 0

0 0 1

1 0 0

,

 0 0 1

1 0 0

0 1 0

,

 0 1 0

1 0 0

0 0 1

,

 0 0 1

0 1 0

1 0 0

,

 1 0 0

0 0 1

0 1 0

,
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(c) Every orthogonal matrix is non-singular.
Why? Recall definition: An (n×n)-square matrix C is orthogonal if CtC = CCt = In.
Now what does Lemma (1) say?

(d) Every upper uni-triangular matrix is non-singular. (Reason: Lemma (2).) Examples:

• A =

[
1 α

0 1

]
.

• B =

 1 α β

0 1 γ

0 0 1

.

• C =


1 α β γ

0 1 δ ϵ

0 0 1 η

0 0 0 1

.

A square matrix for which all diagonal entries are 1 and all entries below the diagonal
are 0 is called an upper uni-triangular matrix.
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9. More examples of singular matrices.
(a) The zero square matrix is singular.

(b) Every strictly upper triangular matrix is singular. Examples:

• A =

[
0 α

0 0

]
.

• B =

 0 α β

0 0 γ

0 0 0

.

• C =


0 α β γ

0 0 δ ϵ

0 0 0 η

0 0 0 0

.

A square matrix for which all diagonal entries and all entries below the diagonal are 0 is
called a strictly upper triangular matrix.
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(c) Every square matrix with an entire column of 0’s is singular.
Illustration through (4× 4)-square matrices:

• Suppose A =


0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

. We claim that A is singular. How to see this?

Can we name a non-zero vector v in R4 for which Av = 0?

Yes, we take v =


1

0

0

0

. Then Av = 0.

• How about A =


∗ 0 ∗ ∗
∗ 0 ∗ ∗
∗ 0 ∗ ∗
∗ 0 ∗ ∗

? Or A =


∗ ∗ 0 ∗
∗ ∗ 0 ∗
∗ ∗ 0 ∗
∗ ∗ 0 ∗

? Or A =


∗ ∗ ∗ 0

∗ ∗ ∗ 0

∗ ∗ ∗ 0

∗ ∗ ∗ 0

?

Question. How about an (n × n)-square matrices whose entries in the j-th column are
all 0?
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(d) Every square matrix with an entire row of 0’s is singular.
Illustration through (4× 4)-matrices:

• Suppose A =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 0

. We claim that A is singular. How to see this?

Apply Gaussian elimination
A −→ ... −→ A′

to obtain the reduced row-echelon form A′ which is row-equivalent to A.

The bottom row of A′ is a row of 0’s. So A′ =


⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆

0 0 0 0

.

The rank of A′ is at most 3. The homogeneous system LS(A′, 0) will have a non-trivial solution, say,
‘x = v’, which will also be a non-trivial solution of the homogeneous system LS(A, 0).
Therefore A is singular.

• How about A =


0 0 0 0

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

? Or A =


∗ ∗ ∗ ∗
0 0 0 0

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

? Or A =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 0

∗ ∗ ∗ ∗

?

Question. How about an (n× n)-square matrices whose entries in the i-th row are all 0?
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10. Lemma (3). (Special role of identity matrix amongst reduced row-echelon
forms.)
Let A be an (n× n)-square matrix.
Suppose A is a reduced row-echelon form.
Then A is non-singular if and only if A = In.

Remark. Lemma (3) tells us that In is the only (n×n)-square matrix which is simulta-
neously a reduced row-echelon form and a non-singular matrix. Every reduced row-echelon
form which is not In is singular.

Proof. Let A be an (n× n)-square matrix. Suppose A is a reduced row-echelon form.
• Suppose A = In. Then A is non-singular.
• Suppose A is non-singular.

Note that there are r pivot columns in A, where r is the rank of A.
By definition, r ≤ n.
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Then A reads as


1 · · · 0 · · · · · · 0 · · ·
0 · · · 1 · · · · · · 0 · · ·
... ... ...
0 · · · 0 · · · · · · 1 · · ·

· · · all 0’s · · ·
... ... ...

· · · all 0’s · · ·


We claim that r = n:

Suppose it were true that r < n.
Then, because the number of leading ones is strictly smaller than the number of
columns, it would happen that some columns of A would fail to be a pivot column.
Furthermore, because there is the same number of rows as of columns, some rows of
A would fail to contain a leading one.
Now it would happen that there was at least one row of 0’s in A.
Then A would be singular. Contradiction arises.

Therefore r = n is the only possibility.
Then each column of A is a pivot column. Hence A = In.
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