
MATH1030 Homogeneous system associated to a system of linear equations

0. Reminder on notations: Rn stands for the set of all (column) vectors with n entries.

1. Definition.
Let A be an (m× n)-matrix with real entries.

(a) The system of linear equations LS(A, 0) is called the homogeneous system with coefficient matrix A.
(b) For each b ∈ Rm, the system LS(A, 0) is referred to as the homogeneous system associated to the system of

linear equations LS(A, b).

2. Theorem (1).
Let A be an (m× n)-matrix. Let b ∈ Rm.

(a) For any u,v ∈ Rn, if ‘x = u’, ‘x = v’ are solutions of LS(A, b), then ‘x = v − u’ is a solution of LS(A, 0).
(b) For any u,h ∈ Rn, if ‘x = u’ is a solution of LS(A, b) and ‘x = h’ is a solution of LS(A, 0), then ‘x = u+ h’

is a solution of LS(A, b).

3. Proof of Theorem (1).
Let A be an (m× n)-matrix. Let b ∈ Rm.

(a) Pick any u,v ∈ Rn.
Suppose ‘x = u’, ‘x = v’ are solutions of LS(A, b).
Then Au = b and Av = b.
Therefore A(v − u) = Av −Au = b− b = 0.
Hence ‘x = v − u’ is a solution of LS(A, 0).

(b) Pick any u,h ∈ Rn.
Suppose ‘x = u’ is a solution of LS(A, b) and ‘x = h’ is a solution of LS(A, 0).
Then Au = b and Ah = 0.
Therefore A(u+ h) = Au+Ah = b+ 0 = b.
Hence ‘x = u+ h’ is a solution of LS(A, b).

4. Theorem (2). (Set-theoretic re-formulation of Theorem (1).)
Let A be an (m×n)-matrix. For each c ∈ Rm, denote the solution set of LS(A, c) by Πc. (Note that Π0 = N (A).)
For each b ∈ Rm, for each u ∈ Πb, the equality

Πb =
{
t ∈ Rn : There exists some h ∈ N (A)

such that t = u+ h

}
holds.
Remark. What the set equality in the conclusion of Theorem (2) says is:

(†) For any v ∈ Rn, if

v belongs to the solution set of LS(A, b)

then
there exists some h ∈ N (A) such that v = u+ h.

(‡) For any v ∈ Rn, if

there exists some h ∈ N (A) such that v = u+ h

then
v belongs to the solution set of LS(A, b).

Further remark. Some people like to ‘abuse notation’ to present the conclusion in this result as:

For each b ∈ Rm, for each u ∈ Πb, the ‘equality’ Πb = u+Π0 holds.

The ‘equality’ Πb = u+Π0, when put in plain words, is to be interpreted as:
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the ‘totality of all solutions of LS(A, b)’ can be regarded as( one ‘particular solution’
of LS(A, b)

)
+
( totality of all solutions

of LS(A, 0)

)
5. Illustration (1) of the idea in Theorem (1) and Theorem (2), from school maths.

Let A = [ −1 2 ].
For each real number b, LS(A, b) is simply the one linear equation two unknowns −x1 + 2x2 = b.
For each b, the solution set of LS(A, b) is the ‘entire line’ in the coordinate plane.

The null space of A is the line ℓ0 passing through the origin with slope 1

2
.

Now suppose b ̸= 0 (for the sake of visual illustration).

(a) The solution set of LS(A, b) is the line ℓb parallel to ℓ0 and distinct from ℓ0, passing through the point (−b, 0).
‘(x1, x2) = (−b, 0)’ is a solution of LS(A, b).

(b) Now identify column vectors of size 2 with the points on the coordinate plane in the natural way. We see that:

• v belongs to ℓb if and only if v =
[−b
0

]
+ h for some h ∈ N (A).

We can visualize this relation geometrically as follows:—

• We can obtain ℓb from ℓ0 by applying to every point of ℓ0 a ‘translation’ by
[−b
0

]
.

(c) In general, given any point (u1, u2) on ℓb, it happens that:

• v belongs to ℓb if and only if v =
[
u1
u2

]
+ g for some g ∈ N (A).

We can visualize this relation geometrically as follows:—

• We can obtain ℓb from ℓ0 by applying to every point of ℓ0 a ‘translation’ by
[
u1
u2

]
.

(d) For instance, note that ℓb passes through (0, b/2). Then ‘(x1, x2) = (0, b/2)’ is also a solution of LS(A, b).
It so happens that:

• v belongs to ℓb if and only if v =
[
0
b/2

]
+ f for some f ∈ N (A).

6. Illustration (2) of the idea in Theorem (1) and Theorem (2).
Let A = [ 1/3 1/2 −1 ].

For each real number b, LS(A, b) is simply the one linear equation with unknowns 1

3
x1 +

1

2
x2 − x3 = b.

For each b, the solution set of LS(A, b) is the ‘entire line’ in the coordinate plane.

The null space of A is the plane Π0 passing through the origin with ‘normal direction’ parallel to the vector
[
1/3
1/2
−1

]
.

It is explicitly given by N (A) =

{
x ∈ R3 : x = s

[
3
0
1

]
+ t

[
0
2
1

]
for some s, tR

}
.

Now suppose b ̸= 0 (for the sake of visual illustration).

(a) The solution set of LS(A, b) is the line ℓb parallel to Π0 and distinct from Π0, passing through the point
(3b, 0, 0).
‘(x1, x2, x3) = (3b, 0, 0)’ is a solution of LS(A, b).

(b) Now identify column vectors of size 3 with the points on the coordinate space in the natural way. We see that:

• v belongs to Πb if and only if v =

[
3b
0
0

]
+ h for some h ∈ N (A).

We can visualize this relation geometrically as follows:—

• We can obtain Πb from Π0 by applying to every point of Π0 a ‘translation’ by
[
3b
0
0

]
.

(c) In general, given any point (u1, u2, u3) on Πb, it happens that:
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• v belongs to Πb if and only if v =

[
u1
u2
u3

]
+ g for some g ∈ N (A).

We can visualize this relation geometrically as follows:—

• We can obtain Πb from Π0 by applying to every point of Π0 a ‘translation’ by
[
u1
u2
u3

]
.

(d) For instance, note that Πb passes through (0, 0,−b). Then ‘(x1, x2, x3) = (0, 0,−b)’ is also a solution of
LS(A, b).
It so happens that:

• v belongs to Πb if and only if v =

[
0
0
−b

]
+ f for some f ∈ N (A).

7. Illustration (3) of the idea in Theorem (1) and Theorem (2).

Let A =
[
1 0 −2
0 1 −3

]
.

For each vector b in R2, LS(A, b) is the system of two linear equation with three unknowns
{

x1 − 2x3 = b1
x2 − 3x3 = b2

,

in which b =
[
b1
b2

]
.

For each b1, b2, the solution set of LS(A, b) is a ‘line’ in the coordinate space.

The null space of A is the plane Λ0 passing through the origin in the ‘direction’ of the vector
[
2
3
1

]

It is explicitly given by N (A) =

{
x ∈ R3 : x = t

[
2
3
1

]
for some tR

}
.

Now suppose b ̸= 0 (for the sake of visual illustration).

(a) The solution set of LS(A, b) is the line Λb parallel to Λ0 and distinct from Λ0, passing through the point
(b1, b2, 0).
‘(x1, x2, x3) = (b1, b2, 0)’ is a solution of LS(A, b).

(b) Now identify column vectors of size 3 with the points on the coordinate space in the natural way. We see that:

• v belongs to Λb if and only if v =

[
b1
b2
0

]
+ h for some h ∈ N (A).

• We can obtain Λb from Λ0 by applying to every point of Λ0 a ‘translation’ by
[
b1
b2
0

]
.

(c) In general, given any point (u1, u2, u3) on Λb, it happens that:

• v belongs to Λb if and only if v =

[
u1
u2
u3

]
+ g for some g ∈ N (A).

We can visualize this relation geometrically as follows:—

• We can obtain Λb from Λ0 by applying to every point of Λ0 a ‘translation’ by
[
u1
u2
u3

]
.

8. Proof of Theorem (2).
Let b ∈ Rm. Let u ∈ Πb.
By assumption, Au = b.
Write Σb,u = {t ∈ Rn : t = u+ h for some h ∈ N (A)}.
[We want to prove Πb = Σb,u.]

• [We want to prove that ‘every vector in Πb belongs to Σb,u.’
What do we mean to prove, really? ‘For any vector w, if w ∈ Πb, then w ∈ Σb,u.’ ]
Pick any vector w. Suppose w ∈ Πb. [Ask: Is it true that w ∈ Σb,u?]
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By definition, Aw = b.
(Recall that Au = b also.)
Take h = w − u. Then, by definition, Ah = 0. Therefore h ∈ N (A). Also by definition, w = u+ h.
Hence w ∈ Σb,u.

• [We want to prove that ‘every vector in Σb,u belongs to Πb.’
What do we mean to prove, really? ‘For any vector w, if w ∈ Σb,u, then w ∈ Πb.’ ]
Pick any vector w. Suppose w ∈ Σb,u. [Ask: Is it true that w ∈ Πb?]
By definition, w = u+ h for some h ∈ N (A).
By definition, Ah = 0.
(Recall that Au = b.)
Then Aw = A(u+ h) = Au+Ah = b+ 0 = b.
Therefore w ∈ Πb.

It follows that the equality Πb = Σb,u holds.

9. Illustration (4) of the idea in Theorem (1) and Theorem (2).

Let A =

[
1 2 0 1
1 1 1 −1
3 1 5 −7

]
, b =

[
7
3
1

]
.

Consider the system LS(A, b) and its associated homogeneous system LS(A, 0).

(a) The respective augmented matrix representations of LS(A, b) and LS(A, 0) are Cb = [ A b ] and C0 =

[ A 0 ].
The reduced row-echelon forms C ′

b, C
′
0 which are row-equivalent to Cb, C0 respectively are given by

C ′
b =

[
1 0 2 −3 −1
0 1 −1 2 4
0 0 0 0 0

]
, C ′

0 =

[
1 0 2 −3 0
0 1 −1 2 0
0 0 0 0 0

]

Write h1 =

−2
1
1
0

, h2 =

 3
−2
0
1

, u =

−1
4
0
0

.

(b) The solution set of LS(A, b) is given by Πb = {u+ c1h1 + c2h2| c1, c2 ∈ R}.
Note that ‘x = u’ is a (particular) solution of LS(A, b).

(c) The solution set of LS(A, 0) (or in other words, the null space of A) is given by N (A) = {c1h1 + c2h2| c1, c2 ∈ R}.
(d) The difference of any vector in Πb from any vector in Πb is the vector α1h1 + α2h2 for some numbers α1, α2.

It belongs to N (A).
(e) The sum of any vector in Πb and any vector in N (A) is the vector β1h1 + β2h2 for some numbers β1, β2. It

belongs to Πb.
(f) The relation between Πb and N (A) can be visualized geometrically as follows:—

• We can obtain Πb from N (A) by applying to every point of N (A) a ‘translation’ by u.

10. Theorem (3).
Suppose A is an (m× n)-matrix. Then:

(1) LS(A, 0) is consistent, with ‘x = 0’ as a solution for the system. (Or equivalently, N (A) contains some vector
in Rn, namely 0.)

(2) The statements below are logically equivalent:
(2a) 0 is the only vector in N (A).
(2b) LS(A, 0) has a unique solution.
(2c) For each vector b ∈ Rm, if LS(A, b) is consistent then LS(A, b) has a unique solution.

(3) The statements below are logically equivalent:
(3a) N (A) contains some vector in Rn other than 0.
(3b) LS(A, 0) has at least two solutions.
(3c) For each vector b ∈ Rm, if LS(A, b) is consistent then LS(A, b) has at least two solutions.

Proof. Exercise. (Apply Theorem (1).)
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