MATH1030 Homogeneous system associated to a system of linear equations

0. Reminder on notations: R™ stands for the set of all (column) vectors with n entries.

1. Definition.
Let A be an (m x n)-matrix with real entries.
(a) The system of linear equations LS(A, 0) is called the homogeneous system with coefficient matrix A.
(b) For each b € R™, the system LS(A, 0) is referred to as the homogeneous system associated to the system of
linear equations LS(A, b).
2. Theorem (1).
Let A be an (m X n)-matrix. Let b € R™.

(a) For any u,v € R", if x = u’, x = v’ are solutions of LS(A, b), then x = v —u’ is a solution of LS(A, 0).
(b) For any u,h € R", if x = u’ is a solution of LS(A, b) and x = h’ is a solution of LS(A, 0), then x =u+h’
is a solution of LS(A, b).
3. Proof of Theorem (1).
Let A be an (m X n)-matrix. Let b € R™.

(a) Pick any u,v € R™.
Suppose ‘x = u’, ‘x = v’ are solutions of LS(A, b).
Then Au=b and Av =b.
Therefore A(v—u) = Av—Au=b—-b=0.
Hence ‘x = v — u’ is a solution of £LS(A4, 0).
(b) Pick any u,h € R™.
Suppose ‘x = u’ is a solution of LS(A4, b) and ‘x = h’ is a solution of LS(4, 0).
Then Au =b and Ah = 0.
Therefore A(u+h) = Au+ Ah=b+0=Dhb.

Hence ‘x = u + h’ is a solution of LS(A, b).

4. Theorem (2). (Set-theoretic re-formulation of Theorem (1).)
Let A be an (m x n)-matrix. For each ¢ € R™, denote the solution set of LS(A, ¢) by Il.. (Note that Ilo = N'(A).)
For each b € R™, for each u € Ily, the equality

I, = {t c g . There exists some h € N(A) }

such thatt =u+h

holds.

Remark. What the set equality in the conclusion of Theorem (2) says is:
(t) For any v € R™, if
v belongs to the solution set of LS(A, b)

then
there exists some h € N'(A) such that v =u+ h.

(1) For any v € R", if
there exists some h € N'(A) such that v=u+h
then
v belongs to the solution set of LS(A, b).
Further remark. Some people like to ‘abuse notation’ to present the conclusion in this result as:
For each b € R™, for each u € Ily, the ‘equality’ IIy, = u + Ily holds.

The ‘equality’ II, = u + Iy, when put in plain words, is to be interpreted as:



the ‘totality of all solutions of LS(A, b)’ can be regarded as

one ‘particular solution’ totality of all solutions
( of LS(A, b) ) ( of LS(A, 0) )

5. Illustration (1) of the idea in Theorem (1) and Theorem (2), from school maths.
Let A=] -1 2].
For each real number b, LS(A, b) is simply the one linear equation two unknowns —x; + 2x5 = b.
For each b, the solution set of LS(A, b) is the ‘entire line’ in the coordinate plane.
1
The null space of A is the line ¢y passing through the origin with slope 3

Now suppose b # 0 (for the sake of visual illustration).
(a) The solution set of LS(A, b) is the line ¢}, parallel to £y and distinct from ¢y, passing through the point (—b,0).
‘(x1,22) = (—b,0)" is a solution of LS(A, b).
(b) Now identify column vectors of size 2 with the points on the coordinate plane in the natural way. We see that:
e v belongs to ¢ if and only if v = [_Ob] + h for some h € N(4).
We can visualize this relation geometrically as follows:—
o We can obtain £, from ¢, by applying to every point of £y a ‘translation’ by [_Ob}
(c) In general, given any point (u1,us) on £y, it happens that:
e v belongs to ¢, if and only if v = [Zé] + g for some g € N (A).
We can visualize this relation geometrically as follows:—
e We can obtain ¢, from ¢, by applying to every point of ¢y a ‘translation’ by [Zﬂ

(d) For instance, note that £, passes through (0,b/2). Then ‘(x1,z2) = (0,b/2)’ is also a solution of LS(A4, b).
It so happens that:

e v belongs to ¢, if and only if v = [b?Q} + f for some f € N(A).

6. Illustration (2) of the idea in Theorem (1) and Theorem (2).
Let A=[1/3 1/2 —1].
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For each real number b, LS(A, b) is simply the one linear equation with unknowns gan + 5%~ T3 = b.

For each b, the solution set of LS(A, b) is the ‘entire line’ in the coordinate plane.
1/3
The null space of A is the plane Il passing through the origin with ‘normal direction’ parallel to the vector |1/2].
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It is explicitly given by N(A) = {x ER*:x=s +1t %

for some s, t[R}.

Now suppose b # 0 (for the sake of visual illustration).

(a) The solution set of LS(A, b) is the line ¢, parallel to IIy and distinct from IIy, passing through the point
(30,0,0).
“(z1,x9,23) = (3b,0,0)’ is a solution of LS(A4, b).

(b) Now identify column vectors of size 3 with the points on the coordinate space in the natural way. We see that:

3b
o Vv belongs to 1I; if and only if v = 8 + h for some h € N(A).

We can visualize this relation geometrically as follows:—
3b
e We can obtain II; from Il by applying to every point of Il a ‘translation’ by 8 .

(¢) In general, given any point (u1,us,us) on IIy, it happens that:
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e v belongs to II, if and only if v = + g for some g € N'(A).

We can visualize this relation geometrically as follows:—

Uy
e We can obtain II, from Il by applying to every point of Iy a ‘translation’ by |:lQ] .
us
(d) For instance, note that II, passes through (0,0, —b). Then ‘(z1,22,23) = (0,0,—b) is also a solution of
LS(A, b).
It so happens that:

0
0

o v belongs to II, if and only if v = + f for some f € N'(A).

7. Illustration (3) of the idea in Theorem (1) and Theorem (2).

Lwa=[1 9 2],
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For each vector b in R?, LS(A, b) is the system of two linear equation with three unknowns {
. . _ [
in which b = |,~1.
2
For each by, bg, the solution set of LS(A, b) is a ‘line’ in the coordinate space.

2
The null space of A is the plane Ag passing through the origin in the ‘direction’ of the vector [ﬂ

2
It is explicitly given by N (A) = {x eER¥:x=t [ﬂ for some t[R}.

Now suppose b # 0 (for the sake of visual illustration).

(a) The solution set of LS(A, b) is the line Ap parallel to Ag and distinct from Ag, passing through the point
(b1,b2,0).
“(x1,z2,23) = (b1, b2,0)’ is a solution of LS(A, b).

(b) Now identify column vectors of size 3 with the points on the coordinate space in the natural way. We see that:

by

o v belongs to Ap, if and only if v = [bs | + h for some h € N(A).
0

by
e We can obtain Ay from Ag by applying to every point of Ag a ‘translation’ by [bg} .
0

(¢) In general, given any point (u1,us,us) on Ap, it happens that:
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e v belongs to Ay, if and only if v = + g for some g € N (A).

We can visualize this relation geometrically as follows:—

U1
e We can obtain Ay from Ag by applying to every point of Ag a ‘translation’ by luzl .
u3

8. Proof of Theorem (2).
Let b € R™. Let u € Il,.
By assumption, Au = b.
Write ¥4 = {t € R” : t = u+ h for some h € N(A4)}.
[We want to prove II, = p, 4]
o [We want to prove that ‘every vector in II, belongs to Xy 4.’

What do we mean to prove, really? ‘For any vector w, if w € II,, then w € X, ." ]

Pick any vector w. Suppose w € II,. [Ask: Is it true that w € Xy, 7]

[y



By definition, Aw = b.
(Recall that Au = b also.)
Take h = w — u. Then, by definition, Ah = 0. Therefore h € A/(A). Also by definition, w = u + h.
Hence w € Xy, 4.
o [We want to prove that ‘every vector in Xy, ,, belongs to II,.’
What do we mean to prove, really? ‘For any vector w, if w € Xy, y,, then w € II;,." ]
Pick any vector w. Suppose w € X, . [Ask: Is it true that w € II7]
By definition, w = u + h for some h € N'(4).
By definition, Ah = 0.
(Recall that Au = b.)
Then Aw = A(u+h)=Au+Ah=b+0=hb.
Therefore w € IIy,.

It follows that the equality Iy = ¥y,  holds.

9. Illustration (4) of the idea in Theorem (1) and Theorem (2).

120 1 7
LetA=|1 1 1 -1 | b=|3].
315 -7 1

Consider the system L£S(A, b) and its associated homogeneous system LS(A, 0).

(a) The respective augmented matrix representations of £LS(A, b) and LS(A, 0) are Cp, = [ A| b ] and Cp =
[A]0]

The reduced row-echelon forms Cy, Cj which are row-equivalent to Ch, Cp respectively are given by

10 2 =-3|-1 10 2 =310

Cob=101 -1 2|4 |, Co=101 -1 210

00 0 O01]0 00 0 010
-2 3 -1
Write hy = % , hy = BQ,u: 3
0 1 0

(b) The solution set of LS(A, b) is given by Il = {u+ c1hy + cohs| 1,0 € R}.
Note that ‘x = u’ is a (particular) solution of LS(A, b).
(c) The solution set of LS(A, 0) (or in other words, the null space of A) is given by N'(A) = {¢1hy + coha| 1,2 € R}

(d) The difference of any vector in Iy, from any vector in Iy, is the vector a;hy + ashy for some numbers aq, as.
It belongs to N (A).

(e) The sum of any vector in ITp and any vector in N'(A) is the vector B1h; + B2hy for some numbers Sy, B2. It
belongs to IIy,.

(f) The relation between II, and N'(A) can be visualized geometrically as follows:—

o We can obtain I}, from N (A) by applying to every point of A (A) a ‘translation’ by u.
10. Theorem (3).

Suppose A is an (m X n)-matrix. Then:

(1) LS(A, 0) is consistent, with x = 0’ as a solution for the system. (Or equivalently, N'(A) contains some vector
in R™, namely 0.)
(2) The statements below are logically equivalent:
(2a) 0 is the only vector in N'(A).
(2b) LS(A, 0) has a unique solution.
(2¢) For each vector b € R™, if LS(A, b) is consistent then LS(A, b) has a unique solution.
(3) The statements below are logically equivalent:
(3a) N(A) contains some vector in R"™ other than 0.
(3b) LS(A, 0) has at least two solutions.
(3¢) For each vector b € R™, if LS(A, b) is consistent then LS(A, b) has at least two solutions.

Proof. Exercise. (Apply Theorem (1).)



