
0. Reminder on notations: Rn stands for the set of all (column) vectors with n entries.
1. Definition. (Null space of a matrix.)

Let A be an (m× n)-matrix.
(a) The system of linear equations LS(A, 0) is called the homogeneous system with coeffi-

cient matrix A.
(b) The solution set of the homogeneous system LS(A, 0) is called the null space of A. It

is denoted by N (A).
Remark.
First of all, recall that

‘x = u’ is a solution of LS(A, 0) if and only if Au = 0.
Using as ‘selection criterion’ the equality ‘Ax = 0’, we may present the null space of A as
a set constructed using the method of specification:
• Those vectors in Rn which, upon substitution into the ‘x’ in this ‘selection criterion’

result in an equality, will be ‘collected’.
• Those vectors in Rn which, upon substitution into the ‘x’ in this ‘selection’ do not result

in an equality, will be ‘discarded’.
Hence the null space of A is the set {u ∈ Rn : Au = 0}.
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Further remark.

How to use the various versions of the definitions?

Always remember, whenever v ∈ Rn, the statements below mean the same thing:
(a) v ∈ N (A).
(b) Av = 0.
(c) ‘x = v’ is a solution of the homogeneous system LS(A, 0) with unknown x.

To determine N (A) is the same as giving an ‘explicit’ description of the solution set of the
homogeneous system LS(A, 0) through set language, in terms of (hopefully just a few)
solutions of the system.

That amounts to finding all solutions of LS(A, 0).
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2. Example (⋆).
Determine the null space of the matrix

A =


1 4 0 −1 0 7 −9

2 8 −1 3 9 −13 7

0 0 2 −3 −4 12 −8

−1 −4 2 4 8 −31 37


explicitly (in terms of concrete vectors in R7).

(a) First determine the reduced row-echelon form A′ which is row-equivalent to A by apply-
ing a sequence of row operations, say, Gaussian elimination, to the augmented matrix
representation of LS(A, 0):

[A|0] −→ · · · · · · · · · −→ [A′|0]

We find that

A′ =


1 4 0 0 2 1 −3

0 0 1 0 1 −3 5

0 0 0 1 2 −6 6

0 0 0 0 0 0 0
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(b) LS(A′, 0) reads:
x1 + 4x2 + 2x5 + x6 − 3x7 = 0

x3 + x5 − 3x6 + 5x7 = 0

x4 + 2x5 − 6x6 + 6x7 = 0

0 = 0

The solutions of LS(A′, 0), and hence of LS(A, 0), are given by
x = c1u1 + c2u2 + c3u3 + c4u4, where c1, c2, c3, c4 are arbitrary numbers, in which

u1 =



−4

1

0

0

0

0

0


, u2 =



−2

0

−1

−2

1

0

0


, u3 =



−1

0

3

6

0

1

0


, u4 =



3

0

−5

−6

0

0

1


.

This amounts to saying that for any v ∈ R7, ‘x = v’ is a solution of LS(A, 0) if and
only if there exist some c1, c2, c3, c4 ∈ R such that v = c1u1 + c2u2 + c3u3 + c4u4.
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(c) We now apply the method of specification to present the solution set of LS(A, 0) ex-
plicitly in terms of u1,u2,u3,u4, through the ‘selection criterion’
(†) ‘ there exist some c1, c2, c3, c4 ∈ R such that y = c1u1 + c2u2 + c3u3 + c4u4’
in which y is the ‘variable’.

How does the method work? Remember:
• Those and only those vectors in R7 which upon substitution into the symbol y in (†)

turn it into a true statement will be collected.
• The others will be ‘discarded’.
So N (A) is the set{

y ∈ R7 :
there exist some c1, c2, c3, c4 ∈ R
such that y = c1u1 + c2u2 + c3u3 + c4u4

}

(As shorthand we present N (A) as {c1u1 + c2u2 + c3u3 + c4u4 | c1, c2, c3, c4 ∈ R}.)
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(d) Comment on the presentation of the manipulations.
During the manipulation

[A|0] −→ · · · · · · · · · −→ [A′|0]

we observe that the last column in every matrix in this sequence stays ‘0’. This is
expected: no matter which row-operation is applied on the zero vector, it only convert
the zero vector to itself.
Hence we can actually save time (and ink) by omitting the 0’s throughout, and simply
write

A −→ · · · · · · · · · −→ A′

provided we remember we are apply row operations on the coefficient matrices of various
homogeneous system.
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3. Examples on determining null space explicitly.
(a) Determine the null space of the matrix

A =

 1 2 2

1 3 3

2 6 5


Determine the reduced row-echelon form A′ which is row-equivalent to A by applying a
sequence of row operations to A:

A =

 1 2 2

1 3 3

2 6 5

 −1R1+R2−−−−−→

 1 2 2

0 1 1

2 6 5

 −2R1+R3−−−−−→

 1 2 2

0 1 1

0 2 1

 −2R2+R3−−−−−→

 1 2 2

0 1 1

0 0 −1


−1R3−−−→

 1 2 2

0 1 1

0 0 1

 −2R2+R1−−−−−→

 1 0 0

0 1 1

0 0 1

 −1R3+R2−−−−−→

 1 0 0

0 1 0

0 0 1

 = A′

7



The null space N (A) of the matrix A is the solution set of LS(A, 0), and hence is the
solution set of LS(A′, 0) as well.
Note that LS(A′, 0) reads: 

x1 = 0

x2 = 0

x3 = 0

The only solution of LS(A, 0) is given by x =

 0

0

0

.

Hence N (A) is the set


 0

0

0


.
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(b) Determine the null space of the matrix

A =

 1 2 2 4

1 3 3 5

2 6 5 6


Determine the reduced row-echelon form A′ which is row-equivalent to A by applying a
sequence of row operations to A:

A =

 1 2 2 4

1 3 3 5

2 6 5 6

 −1R1+R2−−−−−→

 1 2 2 4

0 1 1 1

2 6 5 6

 −2R1+R3−−−−−→

 1 2 2 4

0 1 1 1

0 2 1 −2


−2R2+R3−−−−−→

 1 2 2 4

0 1 1 1

0 0 −1 −4

 −1R3−−−→

 1 2 2 4

0 1 1 1

0 0 1 4

 −2R2+R1−−−−−→

 1 0 0 2

0 1 1 1

0 0 1 4


−1R3+R2−−−−−→

 1 0 0 2

0 1 0 −3

0 0 1 4

 = A′
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The null space N (A) of the matrix A is the solution set of LS(A, 0), and hence is the
solution set of LS(A′, 0) as well. Note that LS(A′, 0) reads:

x1 + 2x4 = 0

x2 − 3x4 = 0

x3 + 4x4 = 0

The solutions of LS(A, 0) are given by
x = tu , where t is an arbitrary number, in which

u =


−2

3

−4

1

.

Hence N (A) is the set {tu | t ∈ R}.
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(c) Determine the null space of the matrix

A =

 1 2 0 1 7

1 1 1 −1 3

3 1 5 −7 1


Determine the reduced row-echelon form A′ which is row-equivalent to A by applying a
sequence of row operations to A:

A =

 1 2 0 1 7

1 1 1 −1 3

3 1 5 −7 1

 −1R1+R2−−−−−→

 1 2 0 1 7

0 −1 1 −2 −4

3 1 5 −7 1

 −3R1+R3−−−−−→

 1 2 0 1 7

0 −1 1 −2 −4

0 −5 5 −10 −20


−1R2−−−→

 1 2 0 1 7

0 1 −1 2 4

0 −5 5 −10 −20

 5R2+R3−−−−→

 1 2 0 1 7

0 1 −1 2 4

0 0 0 0 0


−2R6+R1−−−−−→

 1 0 2 −3 −1

0 1 −1 2 4

0 0 0 0 0

 = A′
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The null space N (A) of the matrix A is the solution set of LS(A, 0), and hence is the
solution set of LS(A′, 0) as well. Note that LS(A′, 0) reads:

x1 + 2x3 − 3x4 − x5 = 0

x2 − x3 + 2x4 + 4x5 = 0

0 = 0

The solutions of LS(A, 0) are given by
x = c1u1 + c2u2 + c3u3 , where c1, c2, c3 are arbitrary numbers, in which

u1 =


−2

1

1

0

0

, u2 =


3

−2

0

1

0

, u3 =


1

−4

0

0

1

.

Hence N (A) is the set {c1u1 + c2u2 + c3u3 | c1, c2, c3 ∈ R}.
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4. Further consideration on Example (⋆).
Let

A =


1 4 0 −1 0 7 −9

2 8 −1 3 9 −13 7

0 0 2 −3 −4 12 −8

−1 −4 2 4 8 −31 37


Recall that N (A) is the set

{c1u1 + c2u2 + c3u3 + c4u4 | c1, c2, c3, c4 ∈ R} ,

in which

u1 =



−4

1

0

0

0

0

0


, u2 =



−2

0

−1

−2

1

0

0


, u3 =



−1

0

3

6

0

1

0


, u4 =



3

0

−5

−6

0

0

1


.

13



(a) Further question.
What is so special about N (A), regarding its ‘algebraic structure’?
Answer to further question.
The statements below hold:

(1) 0 ∈ N (A).
(2) For any v,w ∈ R7, if v,w ∈ N (A) then v +w ∈ N (A).
(3) For any v ∈ R7, for any α ∈ R, if v ∈ N (A) then αv ∈ N (A).
(4) For any v,w ∈ R7, for any α, β ∈ R, if v,w ∈ N (A) then αv + βw ∈ N (A).

(b) Justification of (1), (2), (3) in answer to further question.

To apply what we see about N (A) in concrete terms?
(1) Note that 0 = 0 · u1 + 0 · u2 + 0 · u3 + 0 · u4, and 0 ∈ R.

Then 0 ∈ N (A).
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(2) Pick any v,w ∈ R7.
Suppose v,w ∈ N (A).

Then there exist some c1, c2, c3, c4, d1, d2, d3, d4 ∈ R such that
v = c1u1 + c2u2 + c3u3 + c4u4 and w = d1u1 + d2u2 + d3u3 + d4u4.

Then

v +w = · · · = (c1 + d1)u1 + (c2 + d2)u2 + (c3 + d3)u3 + (c4 + d4)u4,

and c1 + d1, c2 + d2, c3 + d3, c4 + d4 ∈ R.

Therefore v +w ∈ N (A).

(3) Pick any v ∈ R7. Pick any α ∈ R.
Suppose v ∈ N (A).

Then there exists some c1, c2, c3, c4 ∈ R such that v = c1u1 + c2u2 + c3u3 + c4u4.

Then
αv = · · · = (αc1)u1 + (αc2)u2 + (αc3)u3 + (αc4)u4,

and αc1, αc2, αc3, αc4 ∈ R.

Therefore αv ∈ N (A).
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(c) Another justification of (1), (2), (3) in answer to further question.
To apply the definition of null space? (This is a better method.)

(1) Note that A0 = 0. Then 0 ∈ N (A).

(2) Pick any v,w ∈ R7.
Suppose v,w ∈ N (A). Then Av = 0 and Aw = 0.
Therefore A(v +w) = Av + Aw = 0 + 0 = 0.
Hence v +w ∈ N (A).

(3) Pick any v ∈ R7. Pick any α ∈ R.
Suppose v ∈ N (A). Then Av = 0.
Therefore A(αv) = αAv = α · 0 = 0.
Hence αv ∈ N (A).

Remark.
This ‘second justification’ of (1), (2), (3) is superior to the ‘first’, in the sense that
almost nothing about explicit features of A, apart from the fact that it has 7 columns,
is involved in the mathematical argument. We may wonder the mathematical reasoning
in this ‘second justification’ may work when A is replaced by a general matrix. It turns
out to be the case.
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5. Theorem (1). (Null space of a matrix as a ‘subspace’.)
Let A be an (m× n)-matrix. The statement below hold:
(1) 0 ∈ N (A).
(2) For any v,w ∈ Rn, if v,w ∈ N (A) then v +w ∈ N (A).
(3) For any v ∈ Rn, for any α ∈ R, if v ∈ N (A) then αv ∈ N (A).
(4) For any v,w ∈ Rn, for any α, β ∈ R, if v,w ∈ N (A) then αv + βw ∈ N (A).
Proof. Exercise. (Extract what we did in the study of Example (⋆).)

Remark. We can further deduce that
For any u1,u2, · · · ,uk ∈ Rn, for any α1, α2, · · · , αk ∈ R, if u1,u2, · · · ,uk ∈ N (A)

then α1u1 + α2u2 + · · · + αkuk ∈ N (A).
In plain words (and in terms of the notion of linear combinations, to be introduced later),
this amounts to saying:

Every linear combination of vectors in N (A) is a vector in N (A).
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6. Reformulation of Theorem (1) in terms of homogeneous systems.
Let A be an (m× n)-matrix. The statement below hold:
(1) ‘x = 0’ is a solution of LS(A, 0).
(2) Let v,w ∈ Rn. Suppose ‘x = v’, ‘x = w’ are solutions of LS(A, 0). Then ‘x = v+w’

is a solution of LS(A, 0).
(3) Let v ∈ Rn. Let α ∈ R. Suppose ‘x = v’ is a solution of LS(A, 0). Then ‘x = αv’ is

a solution of LS(A, 0).
(4) Let v,w ∈ Rn. Let α, β ∈ R. Suppose ‘x = v’, ‘x = w’ are solutions of LS(A, 0).

Then ‘x = αv + βw’ is a solution of LS(A, 0).
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