
1. Recall the definition for the notion of Lie products:
Let P,Q be (n× n)-square matrices with real entries.
The (n× n)-square matrix PQ−QP is called the Lie product of P,Q, and is denoted
by [P,Q].

2. Statement (1).
Suppose A,B,C are (n× n)-square matrices, and β, γ are real numbers.
Then [A, βB + γC] = β[A,B] + γ[A,C].

Proof of Statement (1).
[Preparation.

Ask: What is the assumption?

Answer. ‘A,B,C are (n× n)-square matrices, and β, γ are real numbers’.

Further ask: What is the (desired) conclusion to be deduced from the assumption?

Answer. ‘[A, βB + γC] = β[A,B] + γ[A,C]’.]
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Statement (1).
Suppose A,B,C are (n× n)-square matrices, and β, γ are real numbers.
Then [A, βB + γC] = β[A,B] + γ[A,C].

Proof of Statement (1).
Suppose A,B,C are (n× n)-square matrices, and β, γ are real numbers.

[Reminder: We try to deduce [A, βB + γC] = β[A,B] + γ[A,C].]
Then

[A, βB + γC] = A(βB + γC)− (βB + γC)A

= A(βB) + A(γC)− (βB)A− (γC)A

= βAB + γAC − βBA− γCA

= β(AB −BA) + γ(AC − CA)

= β[A,B] + γ[A,C] ⊓⊔
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Remark. We can similarly deduce these statements below:
(a) Suppose A is an (n× n)-square matrix.

Then [A,A] = On×n.
(b) Suppose A,B are (n× n)-square matrices.

Then [A,B] = −[B,A] = [−B,A] = [B,−A].
(c) Suppose A,B,C are (n× n)-square matrices, and α, β are real numbers.

Then [αA + βB,C] = α[A,C] + β[B,C].
(d) Suppose A,B,C are (n× n)-square matrices.

Then [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = On×n.
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3. Recall the definitions for the notions of symmetric matrix and skew-symmetric matrix.
Let C be an (n× n)-square matrix.

(a) C is said to be symmetric if and only if Ct = C.
(b) C is said to be skew-symmetric if and only if Ct = −C.

4. Statement (2).
Let A be an (n× n)-square matrix.
Suppose A is symmetric and A is skew-symmetric.
Then A = On×n.

Proof of Statement (2).
[Ask: What is the assumption?

Answer. ‘A is an (n×n)-square matrix. Also, A is symmetric and A is skew-symmetric.’

Further ask: What is the (desired) conclusion to be deduced from the assumption?

Answer. ‘A = On×n’.]
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Statement (2).
Let A be an (n× n)-square matrix.
Suppose A is symmetric and A is skew-symmetric.
Then A = On×n.

Proof of Statement (2).
Let A be an (n× n)-square matrix.
Suppose A is symmetric and A is skew-symmetric.

[Reminder: We try to deduce A = On×n.

Observe: We want to obtain some equality concerned with A. It will be good if we can
start with some equality involving A.

Ask: Does the assumption provide any equality concerned with A?]
Since A is symmetric, we have At = A.
Since A is skew-symmetric, we have At = −A. Then A = −At.
Now we have

2A = A + A = At + (−At) = At − At = On×n.

Then A =
1

2
On×n = On×n. ⊓⊔
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5. Recall the definition for the notion of matrix inverse.
Let P be an (n× n)-square matrix.
Suppose Q is a (n× n)-square matrix. Further suppose QP = In and PQ = In. Then
we say Q is a matrix inverse of P .

6. Statement (3).
Let A,B,C be (n× n)-square matrices.
Suppose each of B,C is a matrix inverse of A.
Then B = C.

Proof of Statement (3).
Let A,B,C be (n× n)-square matrices.
Suppose each of B,C is a matrix inverse of A.
Since B is a matrix inverse of A, we have BA = In and AB = In.
Since C is a matrix inverse of A, we have CA = In and AC = In.

[Ask: Can we obtain from, say, ‘BA = In’, some other equality, with B alone in one
side and without B in the other side? Or how about C?]

We have BA = In and AC = In.
Then B = BIn = B(AC) = (BA)C = InC = C. ⊓⊔
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7. Recall the definition for the notion of idempotence.
Suppose C is an (n× n)-square matrix.
Then C is said to be idempotent if and only if C2 = C.

Recall the definition for the notion of invertibility.
Suppose P is an (n× n)-square matrix.
Then P is said to be invertible if and only if P has a matrix inverse.

8. Statement (4).
Let A be an (n× n)-square matrix. Suppose A− In is idempotent.
Then A is invertible.

Proof of Statement (4).
[Ask: What is the assumption?

Answer. ‘A is an (n× n)-square matrix. Also, A− In is idempotent.’

Further ask: What is the (desired) conclusion to be deduced from the assumption?

Answer. ‘A has a matrix inverse.’ But what is it, really? ‘There is some (n× n)-square
matrix B so that BA = In and AB = In’.]
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Statement (4).
Let A be an (n× n)-square matrix. Suppose A− In is idempotent.
Then A is invertible.

Proof of Statement (4).
Let A be an (n× n)-square matrix. Suppose A− In is idempotent.

[Reminder: We try to deduce that A is invertible.
Objective: We try to name an appropriate (n × n)-matrix B for which BA = In and
AB = In.
Ask: What does the assumption tell us about A? Can we extract some equality about
A from it?
Answer: ‘(A− In)

2 = A− In’.]
Since A− In is idempotent, we have

A− In = (A− In)
2 = A(A− In)− In(A− In) = · · · = A2 − 2A + In.

Therefore 3

2
A− 1

2
A2 = In. Hence (

3

2
In −

1

2
A)A = In and A(

3

2
In −

1

2
A) = In.

Then there exists some (n × n)-square matrix B, namely, B =
3

2
In − 1

2
A, such that

BA = In and AB = In. Therefore A is invertible. ⊓⊔

8





9. Statement (5).
Let A be an (n× n)-square matrix.
Suppose A is idempotent, and A is not the identity matrix. Then there exists some non-zero
vector v in Rn such that Av = 0.

Proof of Statement (5).
Let A be an (n × n)-square matrix. Suppose A is idempotent, and A is not the identity
matrix.

[Reminder: We want to deduce that there exists some non-zero vector v in Rn such that
Av = 0.
Ask: How does such a vector v arise? Is there some equality with A involved in one side
and with only the zero matrix (or zero vector) in the other side?]

Since A is idempotent, A2 = A.
Then A(A− In) = A2 − A = On×n.
Since A is not the identity matrix, A− In is not the zero matrix. Then there is a non-zero
entry somewhere in A− In, say, in the k-th column.
Denote the k-th column of A− In by v. By definition, there is a non-zero entry in v. Then
v is not a zero vector in Rn.
Since A(A− In) = On×n, we have Av = 0. ⊓⊔
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10. Recall the definition for the notion of nilpotence.
Suppose A is a square matrix.
Then A is said to be nilpotent if and only if there is some positive integer p so that
Ap = O.

11. Statement (6).
Let A be an (n× n)-square matrix.
Suppose A is not the zero matrix and A is nilpotent.
Then In − A is invertible, and there is some positive integer k so that
In + A + A2 + · · · + Ak is a matrix inverse of In − A.

Proof of Statement (6).
Let A be an (n× n)-square matrix. Suppose A is not the zero matrix and A is nilpotent.

[Preparatory roughwork. Observe that for each positive integer m, the equality
(In − A)(In + A + A2 + · · · + Am) = In − Am+1

hold regardless of the assumption on A.

Ask: Does the assumption guarantee that the ‘right-hand-side’ becomes In for some
appropriate value(s) of m? How? ]
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Statement (6).
Let A be an (n× n)-square matrix.
Suppose A is not the zero matrix and A is nilpotent.
Then In − A is invertible, and there is some positive integer k so that
In + A + A2 + · · · + Ak is a matrix inverse of In − A.

Proof of Statement (6).
Let A be an (n× n)-square matrix. Suppose A is not the zero matrix and A is nilpotent.
Since A is nilpotent, there is some positive integer p so that Ap = O. Since A is not the
zero matrix, p > 1.
Take k = p− 1. Note that k is a positive integer.
Define B = In + A + A2 + · · · + Ap. We have

(In − A)B = (In − A)(In + A + A2 + · · · + Ak)

= (In + A + A2 + · · · + Ak)− A(In + A + A2 + · · · + Ak)

= (In + A + A2 + · · · + Ak)− (A + A2 + · · · + Ak + Ak+1)

= In − Ak+1 = In − Ap = In −On×n = In.

Similarly, we also deduce B(In − A) = In.
Then In − A is invertible and B is a matrix inverse of A. ⊓⊔
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12. Statement (7).
Let A,B be (n× n)-square matrices. Suppose [A,B] = On×n.
Then for any positive integer k, AkB = BAk.
Proof of Statement (7).
Let A,B be (n× n)-square matrices. Suppose [A,B] = On×n.
For each positive integer k, denote by P (k) the proposition AkB = BAk.
• [We intend to deduce P (1), with the help of [A,B] = On×n.]

Note that AB −BA = [A,B] = On×n. Then AB = BA.
Hence P (1) is true.

• Let m be an integer. Suppose P (m) is true.
[With the assumption P (m) and with the help of P (1) (which has been verified al-
ready), we intend to deduce P (m + 1).]

By P (1), we have AB = BA.
Then Am+1B = Am(AB) = Am(BA) = (AmB)A.
By P (m), we have AmB = BAm.
Then Am+1B = (AmB)A = (BAm)A = BAm+1.
Therefore P (m + 1) is true.

By the Principle of Mathematical Induction, P (k) is true for any positive integer k.
⊓⊔
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13. Statement (8).
Let A be an (n× n)-square matrix. Suppose A is nilpotent.
Then A is not invertible.

Proof of Statement (8).
Let A be an (n× n)-square matrix. Suppose A is nilpotent.
Further suppose (for the sake of argument for the moment) that A were invertible.

[We intend to obtain something ‘ridiculous wrong’ from all of the above.

Then we will be forced to concede that under the assumption given in the statement to
be proved, it is impossible for it to happen that ‘A is invertible.’]
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Statement (8).
Let A be an (n× n)-square matrix. Suppose A is nilpotent.
Then A is not invertible.

Proof of Statement (8).
Let A be an (n× n)-square matrix. Suppose A is nilpotent.
Further suppose (for the sake of argument for the moment) that A were invertible.
Since A is nilpotent, there is some positive integer p so that Ap = On×n.
Since A were invertible, there would be some (n × n)-square matrix B so that BA = In
and AB = In. We have

B2A2 = B(BA)A = BInA = BA = In,

B3A3 = B(B2A2)A = BInA = BA = In,
...

BpAp = B(Bp−1Ap−1)A = BInA = BA = In

Recall that Ap = On×n. Then In = BpAp = BpOn×n = O.
[We have obtained something ‘ridiculous wrong’, namely, ‘In = On×n’. This is called a
contradiction.

Contradiction arises. Hence, in the first place, A is not invertible. ⊓⊔
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14. Statement (9).
Let A be an (n×n)-square matrix. Suppose A is idempotent and A is not the zero matrix.
Then A is not nilpotent.

Proof of Statement (9), with the method of proof-by-contradiction.
Let A be an (n×n)-square matrix. Suppose A is idempotent and A is not the zero matrix.
Further suppose (for the sake of argument for this moment) that A were nilpotent.
Since A is idempotent, we have A2 = A.
Since A was nilpotent, there would be some positive integer p so that Ap = O. Since
A ̸= On×n, we would have p > 2.
Then we have

A3 = A2A = A2 = A,

A4 = A3A = A3 = A,
...

Ap = Ap−1A = · · · = A.

Recall that Ap = On×n. Then A = Ap = On×n.
But by assumption, A ̸= On×n also.
Contradiction arises.
Hence, in the first place, A is not nilpotent. ⊓⊔
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