1. Definition. (Square matrix.)

A matrix with the same number of rows as of columns is called a square matrix.

2. Definition. (Non-negative powers of matrix.)

Let A be a square matrix. For each positive integer p, we define the square matrix A^p by

$$A^{p} = \underbrace{((\cdots (((AA)A)A) \cdots)A)A}_{p \text{ copies of } A}.$$

Remark. We call A^2 the square of A and A^3 the cube of A et cetera. By convention, we understand A^1 as A, and A^0 as I_n when A is a $(n \times n)$ -matrix.

3. Definition. (Idempotent matrices.)

Suppose A is a square matrix. Then A is said to be idempotent if and only if $A^2 = A$.

4. Examples on idempotent matrices.

- (a) The $(n \times n)$ -zero matrix is idempotent. Reason: Note that $\mathcal{O}_{n \times n}^2 = \mathcal{O}_{n \times n}$.
- (b) The $(n \times n)$ -identity matrix is idempotent. Reason: Note that $I_n^2 = I_n$.
- (c) Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. We have $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = A$.

Then A is idempotent.

(d) Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$. We have $A^2 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = A$. Then A is idempotent.

Remark. By definition, given that A is an $(n \times n)$ -idempotent matrix, it will happen that $A(A - I_n) = A^2 - A = \mathcal{O}_{n \times n}$. But as suggested by the examples above, it does not follow that $A = \mathcal{O}_{n \times n}$ or $A = I_n$.

Non-examples.

- (a) Let $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. We have $B^2 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \neq B$. Then B is not idempotent.
- (b) Let $B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. We have $B^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \neq B$. Then B is not idempotent.

5. Definition. (Nilpotent matrices.)

Suppose A is a square matrix. Then A is said to be nilpotent if and only if there is some positive integer p so that $A^p = O$.

6. Examples on nilpotent matrices.

(a) The $(n \times n)$ -zero matrix is nilpotent. Reason: Note that $\mathcal{O}_{n \times n}{}^1 = \mathcal{O}_{n \times n}$.

(b) Let
$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
.

We have

Therefore A is nil-potent.

(c) Let
$$A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & 3 & 0 \end{bmatrix}$$
.
We have $A^2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 3 & 0 & 0 \end{bmatrix}$, $A^3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \mathcal{O}_{3 \times 3}$

Therefore A is nil-potent.

It is possible for some non-zero matrix to be 'self-multiplied' for sufficiently many times to result in Remark. the zero matrix.

Non-examples.

(a) The $(n \times n)$ -identity matrix is not nilpotent.

Reason: Note that $I_n^2 = I_n$. Then for each positive integer p, we have $I_n^p = I_n^{p-1} = \cdots = I_n^2 = I_n \neq \mathcal{O}_{n \times n}$.

(b) Let $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

We have $B^2 = \cdots = B$. Then for each positive integer p, we have $B^p = B \neq \mathcal{O}$. Then B is not nilpotent.

7. Definition. (Commuting matrices.)

Suppose A, B are $(n \times n)$ -square matrices. Then A, B are said to commute with each other if and only if AB = BA. We can also say that A, B are a pair of commuting matrices.

8. Examples on commuting matrices.

- (a) The $(n \times n)$ -zero matrix commute with every $(n \times n)$ -square matrix.
- (b) The $(n \times n)$ -identity matrix commute with every $(n \times n)$ -square matrix.
- (c) Let $A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 6 & 0 \\ 0 & 5 \end{bmatrix}$. We have $AB = \dots = \begin{bmatrix} 12 & 0 \\ 0 & 15 \end{bmatrix}, \quad BA = \dots = \begin{bmatrix} 12 & 0 \\ 0 & 15 \end{bmatrix}.$

Then AB = BA. Therefore A, B commute with each other.

(d) Let $A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$.

We have

$$AB = \dots = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad BA = \dots \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Then AB = BA. Therefore A, B commute with each other.

Non-examples.

(a) Let
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
We have
$$AB = \dots = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$$
, $BA = \dots = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}$

Then $AB \neq BA$. Therefore A, B do not commute.

(b) Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$.

We have

$$AB = \dots = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \qquad BA = \dots = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}.$$

Then $AB \neq BA$. Therefore A, B do not commute.

Remark. As suggested by these non-examples on commuting matrices, there is no such thing as the 'Law of Commutativity for matrix multiplication'. Formally speaking, the statement below is false:

Let n be an integer greater than 1. Suppose A, B are $(n \times n)$ -matrices. Then AB = BA.

There is something non-trivial for a pair of square matrices to commute.

9. Definition. (Lie product for square matrices.)

Let A, B be $(n \times n)$ -square matrices with real entries.

The $(n \times n)$ -square matrix AB - BA is called the Lie product of A, B, and is denoted by [A, B].

Remark. [A, B] 'measures' how far AB and BA differ from each other.

10. Examples on Lie product.

Let
$$J = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, $K = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, $L = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$.
We have $JK = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$, $KJ = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$. Then $[J, K] = JK - KJ = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} = L$

Similarly [K, L] = J, and [L, J] = K. (Fill in the detail.)

We also have $[I_n, J] = [I_n, K] = [I_n, L] = \mathcal{O}_{3 \times 3}$.

11. Definition. (Invertible matrices.)

Let A be an $(n \times n)$ -square matrix.

- (a) Suppose B is a $(n \times n)$ -square matrix. Further suppose $BA = I_n$ and $AB = I_n$. Then we say B is a matrix inverse of A.
- (b) A is said to be invertible if and only if A has a matrix inverse.

12. Examples on invertible matrices.

(a) The identity matrix is invertible.

(b) Let
$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix}$.
We have $BA = \cdots = I_2$ and $AB = \cdots = I_2$.

Then A is invertible, and B is a matrix inverse of A.

(c) Let
$$A = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 1/2 & 1/2 & -1/\sqrt{2}\\ 1/2 & 1/2 & 1/\sqrt{2} \end{bmatrix}$$
, and $B = \begin{bmatrix} 1/\sqrt{2} & 1/2 & 1/2\\ -1/\sqrt{2} & 1/2 & 1/2\\ 0 & -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$.

We have $BA = \cdots = I_3$ and $AB = \cdots = I_3$.

Then A is invertible, and B is a matrix inverse of A.

Non-examples.

(a) The $(n \times n)$ -zero matrix is not invertible.

Reason: For any $(n \times n)$ -square matrix B, it happens that $\mathcal{O}_{n \times n} B = \mathcal{O}_{n \times n} \neq I_n$.

(b) Let
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
. Pick any (3×3) -matrix B . Denote the (i, j) -th entry of B by b_{ij} . (So $B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$.)
We have

$$AB = \dots = \begin{bmatrix} b_{21} + b_{31} & b_{22} + b_{32} & b_{23} + b_{33} \\ b_{31} & b_{32} & b_{33} \\ 0 & 0 & 0 \end{bmatrix}$$

The (3,3)-th entry of AB is 0.

Therefore $AB \neq I_3$. (This happens no matter what B is in the first place.) Hence A is not invertible.

(c) Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$. Pick any (2×2) -matrix B. Denote the (i, j)-th entry of B by b_{ij} . (So $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$.) We have

$$AB = \dots = \begin{bmatrix} b_{11} + 2b_{21} & b_{12} + 2b_{22} \\ 2b_{11} + 4b_{21} & 2b_{12} + 4b_{22} \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ 2\alpha & 2\beta \end{bmatrix}$$

in which $\alpha = b_{11} + 2b_{21}$ and $\beta = b_{12} + 2b_{22}$.

Then the entries in the first column of AB are all zero, or all non-zero. Therefore $AB \neq I_2$. (This happens no matter what B is in the first place.)

Hence A is not invertible.

Remark. As suggested by these non-examples on matrix inverse, there is no such thing as the 'Law of Existence of Inverse for matrix multiplication'. Formally speaking, the statement below is false:

Let n be an integer greater than 1. Suppose A is a non-zero $(n \times n)$ -square matrix. Then there exists some $(n \times n)$ -square matrix B such that $BA = I_n$ and $AB = I_n$.

There is something non-trivial for a square matrix to be invertible.

13. Definition. (Transpose.)

Let A be an $(m \times n)$ -matrix, whose (i, j)-th entry is denoted by a_{ij} .

The $(n \times m)$ -matrix whose (k, ℓ) -th entry is given by $a_{\ell k}$ is called the transpose of A, and is denoted by A^t .

$$(\text{So } A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix} \text{ where as } A^{t} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ a_{13} & a_{23} & \cdots & a_{m2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}.)$$

14. Examples on transpose.

Suppose $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 1 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 3 \end{bmatrix}$. Then $A^t = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}$, $B^t = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 1 \end{bmatrix}$ and $C^t = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \end{bmatrix}$.

(a) Note that $A + B = \begin{bmatrix} 2 & 5 & 3 \\ 2 & 2 & 3 \end{bmatrix}$. Then $(A + B)^t = \begin{bmatrix} 2 & 2 \\ 5 & 2 \\ 3 & 3 \end{bmatrix}$

We have
$$A^t + B^t = \dots = \begin{bmatrix} 2 & 2 \\ 5 & 2 \\ 3 & 3 \end{bmatrix}$$
. So $(A+B)^t = A^t + B^t$ (in this example).

(b) Note that $AC = \dots = \begin{bmatrix} 4 & 13 \\ 2 & 7 \end{bmatrix}$. Then $(AC)^t = = \begin{bmatrix} 4 & 2 \\ 13 & 7 \end{bmatrix}$ We have $C^t A^t = \dots = \begin{bmatrix} 4 & 2 \\ 13 & 7 \end{bmatrix}$. So $(AC)^t = C^t A^t$ (in this example).

15. Definition. (Symmetric matrix and Skew-symmetric matrix.)

Let A be an $(n \times n)$ -square matrix.

- (a) A is said to be symmetric if and only if $A^t = A$.
- (b) A is said to be skew-symmetric if and only if $A^t = -A$.

16. Examples and non-examples on symmetric matrices and skew-symmetric matrices.

- (a) The $(n \times n)$ -zero matrix is a symmetric matrix. It is also a skew-symmetric matrix.
- (b) The identity matrix is a symmetric matrix. It is not skew-symmetric.

(c) Let $A = \begin{bmatrix} 1 & 3 & 5 \\ 3 & 2 & 4 \\ 5 & 4 & 6 \end{bmatrix}$. Note that $A^t = \begin{bmatrix} 1 & 3 & 5 \\ 3 & 2 & 4 \\ 5 & 4 & 6 \end{bmatrix} = A$. Then A is symmetric.

Note that $A^t \neq -A$. Then A is not skew-symmetric.

(d) Let $A = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix}$. Note that $A^t = \begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & -3 \\ 2 & 3 & 0 \end{bmatrix} = -A$. Then A is skew-symmetric.

Note that $A^t \neq A$. Then A is not symmetric.

(e) Let $B = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$.

Note that $B^t = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

We have $B^t \neq B$. Then B is not symmetric.

We have $B^t \neq -B$. Then B is not skew-symmetric.

(f) Let
$$B = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
.
Note that $B^t = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

We have $B^t \neq B$. Then B is not symmetric. We have $B^t \neq -B$. Then B is not skew-symmetric.

17. Definition. (Orthogonal matrix.)

Suppose A be an $(n \times n)$ -square matrix.

Then A is said to be orthogonal if $AA^t = I_n$ and $A^tA = I_n$.

Remark. By definition, an orthogonal matrix is invertible, and its matrix inverse is its transpose.

18. Examples on orthogonal matrices.

- (a) The identity matrix is an orthogonal matrix.
- (b) Let θ be a real number, and $A_{\theta} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$, $B_{\theta} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$.

Note that $A_{\theta}{}^{t} = B_{\theta}$.

We have $A_{\theta}A_{\theta}{}^{t} = A_{\theta}B_{\theta} = \cdots = I_{2}$ and $A_{\theta}{}^{t}A_{\theta} = \ldots = I_{2}$. Then A_{θ} is an orthogonal matrix. Similarly, we deduce that B_{θ} is an orthogonal matrix.

(In fact, every (2×2) -orthogonal matrix is given by A_{θ} or B_{θ} for some real number θ .)

(c) Let
$$A = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 1/2 & 1/2 & -1/\sqrt{2}\\ 1/2 & 1/2 & 1/\sqrt{2} \end{bmatrix}$$
.
We have $A^t = \begin{bmatrix} 1/\sqrt{2} & 1/2 & 1/2\\ -1/\sqrt{2} & 1/2 & 1/2\\ 0 & -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$.

Then $AA^t = \cdots = I_3$ and $A^tA = \cdots = I_3$. Therefore A is an orthogonal matrix.

Non-examples.

(a) Let $B = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$. We have $B^t = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$. Then $BB^t = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$. Note that $BB^t \neq I_2$. Then B is not an orthogonal matrix.

(b) Let
$$B = \begin{bmatrix} 1 & -2 \\ 2 & -4 \end{bmatrix}$$
.
We have $B^t = \begin{bmatrix} 1 & 2 \\ -2 & -4 \end{bmatrix}$.
Then $BB^t = \begin{bmatrix} 5 & 10 \\ 10 & 20 \end{bmatrix}$.
Note that $BB^t \neq I_2$. Then B is not an orthogonal matrix.