1. Definition. (Square matrix.)

A matrix with the same number of rows as of columns is called a square matrix.

2. Definition. (Non-negative powers of matrix.)

Let A be a square matrix.

For each positive integer p, we define the square matrix A^p by

$$A^{p} = \underbrace{((\cdots(((AA)A)A)\cdots)A)A}_{p \text{ copies of } A}.$$

Remark.

We call A^2 the square of A and A^3 the cube of A et cetera.

By convention, we understand A^1 as A, and A^0 as I_n when A is a $(n \times n)$ -matrix.

1. Definition. (Square matrix.)

A matrix with the same number of rows as of columns is called a square matrix.

2. Definition. (Non-negative powers of matrix.)

Let A be a square matrix.

For each positive integer p, we define the square matrix A^p by

$$A^p = \underbrace{((\cdots (((AA)A)A)\cdots)A)A}_{p \text{ copies of } A}.$$

Remark.

We call A^2 the square of A and A^3 the cube of A et cetera.

By convention, we understand A^1 as A, and A^0 as I_n when A is a $(n \times n)$ -matrix.

- What is it sony, in plant words? $A^{2} = AA$ $A^{3} = (AA)A = A^{2}A$ $A^{4} = ((AA)A)A = A^{3}A$ $A^{5} = A^{4}A$ \vdots

3. Definition. (Idempotent matrices.)

Suppose A is a square matrix.

Then A is said to be idempotent if and only if $A^2 = A$.

4. Examples on idempotent matrices.

(a) The $(n \times n)$ -zero matrix is idempotent.

Reason: Note that $\mathcal{O}_{n\times n}^2 = \mathcal{O}_{n\times n}$.

(b) The $(n \times n)$ -identity matrix is idempotent.

Reason: Note that $I_n^2 = I_n$.

(c) Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
. We have $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = A$.

Then A is idempotent.

(d) Let
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
. We have $A^2 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = A$.

Then A is idempotent.

Remark.

By definition, given that A is an $(n \times n)$ -idempotent matrix, it will happen that $A(A-I_n) = A^2 - A = \mathcal{O}_{n \times n}$.

But as suggested by the examples above, it does not follow that $A = \mathcal{O}_{n \times n}$ or $A = I_n$.

The point in this passage is to explain what is meant by i) under Inch an assumption that whether a matrix is idemportent is considered 3. Definition. (Idempotent matrices.) This is the 'signport' for where the Suppose A is a square matrix. Then A is said to be idempotent if and only if $A^2 = A$. explains what it is matrix A is 4. Examples on idempotent matrices. idempotent means in terms of (a) The $(n \times n)$ -zero matrix is idempotent. something previously dephed, Reason: Note that $(\mathcal{O}_{n\times n}^2 = \mathcal{O}_{n\times n})$ Square of matrices: (b) The $(n \times n)$ -identity matrix is idempotent. Reason: Note that $I_n^2 = I_n$. en AZ + A, A is not (c) Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. We have $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = A$. of course, by logic: Then A is idempotent. When A is idemportent, (d) Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$. We have $A^2 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = A$. · When A is not idempotent, Then A is idempotent. 42+A. Can you name two more (2x2)-matrices which one idemportent? (Check your answer.)

By definition, given that A is an $(n \times n)$ -idempotent matrix, it will happen that $A(A-I_n) = A^2 - A = \mathcal{O}_{n \times n}$.

But as suggested by the examples above, it does not follow that $A = \mathcal{O}_{n \times n}$ or $A = I_n$.

Non-examples.

(a) Let
$$B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
.

We have
$$B^2 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \neq B$$
.

Then B is not idempotent.

(b) Let
$$B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
.

We have
$$B^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \neq B$$
.

Then B is not idempotent.

Non-examples.

(a) Let
$$B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
.

We have $B^2 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \neq B$.

Then B is not idempotent.

(b) Let
$$B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
.
We have $B^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \neq B$.
Then B is not idempotent.

(2x2) - matrices which are not idempotent?

(Check your answer.)

5. Definition. (Nilpotent matrices.)

Suppose A is a square matrix.

Then A is said to be nilpotent if and only if there is some positive integer p so that $A^p = \mathcal{O}$.

6. Examples on nilpotent matrices.

(a) The $(n \times n)$ -zero matrix is nilpotent.

Reason: Note that $\mathcal{O}_{n\times n}^{1} = \mathcal{O}_{n\times n}$.

(b) Let
$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
. We have

Therefore A is nil-potent.

5. Definition. (Nilpotent matrices.)

Suppose A is a square matrix.

Then A is said to be nilpotent if and only if there is some positive integer p so that $A^p = \mathcal{O}$.)

6 Examples on nilpotent matrices.

(a) The $(n \times n)$ -zero matrix is nilpotent.

Reason: Note that $O_{n\times n}^{-1} = O_{n\times n}$ There exists some positive integer p handly p=1, and that $O_{n\times n}^{-1} = O_{n\times n}$. We have

Somewhere amongst the positive integers, there is one positive integer, which for convenience we label as p, satisfyry

AP = O

The 'value' of such a p depends on what A is.

Therefore A is nil-potent.

There exists some positive integer p, namely p=4, such that AP = U4x4

(c) Let
$$A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & 3 & 0 \end{bmatrix}$$
. We have $A^2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 3 & 0 & 0 \end{bmatrix}$, $A^3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \mathcal{O}_{3\times3}$.

Therefore A is nil-potent.

Remark.

It is possible for some non-zero matrix to be 'self-multiplied' for sufficiently many times to result in the zero matrix.

Non-examples.

(a) The $(n \times n)$ -identity matrix is not nilpotent.

Reason: Note that $I_n^2 = I_n$.

Then for each positive integer p, we have $I_n^p = I_n^{p-1} = \cdots = I_n^2 = I_n \neq \mathcal{O}_{n \times n}$.

(b) Let
$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
.

We have $B^2 = \cdots = B$.

Then for each positive integer p, we have $B^p = B \neq \mathcal{O}$.

Then B is not nilpotent.

(c) Let
$$A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 2 & 3 & 0 \end{bmatrix}$$
. We have $A^2 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 3 & 0 & 0 \end{bmatrix}$, $A^3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \mathcal{O}_{3\times3}$.

Therefore A is nil-potent.

Remark.

Can you name two more (3x)-matrices which are nilpotent? How about (4x4)-matrices? (Check your answer.)

It is possible for some non-zero matrix to be 'self-multiplied' for sufficiently many times to result in the zero matrix.

Non-examples.

(a) The $(n \times n)$ -identity matrix is not nilpotent.

Reason: Note that $I_n^2 = I_n$.

Then for each positive integer p, we have $I_n^p = I_n^{p-1} = \cdots = I_n^2 = I_n \neq \mathcal{O}_{n \times n}$.

(b) Let $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. We verify

We have $B^2 = \cdots = B$.

We have $B^2 = \cdots = B$.

The such positive integer p we have $B^p = B \neq \mathcal{O}$.

B' $\neq \mathcal{O}_{3\times3}$.

Then B is not nilpotent.

Re-formulation:
For each positive integer p.
In + Once

7. Definition. (Commuting matrices.)

Suppose A, B are $(n \times n)$ -square matrices. Then A, B are said to commute with each other if and only if AB = BA. We can also say that A, B are a pair of commuting matrices.

8. Examples on commuting matrices.

- (a) The $(n \times n)$ -zero matrix commute with every $(n \times n)$ -square matrix.
- (b) The $(n \times n)$ -identity matrix commute with every $(n \times n)$ -square matrix.

(c) Let
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 6 & 0 \\ 0 & 5 \end{bmatrix}$. We have
$$AB = \cdots = \begin{bmatrix} 12 & 0 \\ 0 & 15 \end{bmatrix}, \quad BA = \cdots = \begin{bmatrix} 12 & 0 \\ 0 & 15 \end{bmatrix}.$$

Then AB = BA. Therefore A, B commute with each other.

(d) Let
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$. We have

$$AB = \dots = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad BA = \dots \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Then AB = BA. Therefore A, B commute with each other.

7. Definition. (Commuting matrices.)

Suppose A, B are $(n \times n)$ -square matrices. Then A, B are said to commute with each other if and only if AB = BA. We can also say that A, B are a pair of commuting matrices.

8. Examples on commuting matrices.

- (a) The $(n \times n)$ -zero matrix commute with every $(n \times n)$ -square matrix.
- (b) The $(n \times n)$ -identity matrix commute with every $(n \times n)$ -square matrix.

(c) Let
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 6 & 0 \\ 0 & 5 \end{bmatrix}$. We have
$$AB = \cdots = \begin{bmatrix} 12 & 0 \\ 0 & 15 \end{bmatrix}, \quad BA = \cdots = \begin{bmatrix} 12 & 0 \\ 0 & 15 \end{bmatrix}.$$

Then AB = BA. Therefore A, B commute with each other.

(d) Let
$$A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$. We have

$$AB = \cdots = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad BA = \cdots \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Then AB = BA. Therefore A, B commute with each other.

Name to be introduce for convenience in communications.

Can you generalize this
example to other (2x2)matrices?
How about (3x3)-matrices
and (4x4)-matrices?
Check your answer.

Non-examples.

(a) Let
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. We have
$$AB = \cdots = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}, \qquad BA = \cdots = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}.$$

Then $AB \neq BA$. Therefore A, B do not commute.

(b) Let
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$. We have
$$AB = \cdots = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \qquad BA = \cdots = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}.$$

Then $AB \neq BA$. Therefore A, B do not commute.

Remark.

As suggested by these non-examples on commuting matrices, there is no such thing as the 'Law of Commutativity for matrix multiplication'.

Formally speaking, the statement below is false:

Let n be an integer greater than 1. Suppose A, B are $(n \times n)$ -matrices. Then AB = BA. There is something non-trivial for a pair of square matrices to commute. Non-examples.

(a) Let
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. We have $AB = \cdots = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$, $BA = \cdots = \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}$. Then $AB \neq BA$. Therefore A, B do not commute.

(2x2) - matrices?

(b) Let
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$. We have
$$AB = \cdots = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \qquad BA = \cdots = \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}.$$

Then $AB \neq BA$. Therefore A, B do not commute.

Remark.

As suggested by these non-examples on commuting matrices, there is no such thing as the Law of Commutativity for matrix multiplication'.

Formally speaking, the statement below is false:

Let n be an integer greater than 1. Suppose A, B are $(n \times n)$ -matrices. Then AB = BA. There is something non-trivial for a pair of square matrices to commute.

A This is the post in the definition for the notion of commuting matrices.

9. Definition. (Lie product for square matrices.)

Let A, B be $(n \times n)$ -square matrices with real entries.

The $(n \times n)$ -square matrix AB - BA is called the Lie product of A, B, and is denoted by [A, B].

Remark. [A, B] 'measures' how far AB and BA differ from each other.

10. Examples on Lie product.

Let
$$J = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, $K = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, $L = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$.

We have
$$JK = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
, $KJ = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$. Then $[J, K] = JK - KJ = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$

L.

Similarly [K, L] = J, and [L, J] = K. (Fill in the detail.)

We also have $[I_n, J] = [I_n, K] = [I_n, L] = \mathcal{O}_{3\times 3}$.

This is another format for definitions: we give a name and a symbol for a certain type of Spects.

9. Definition. (Lie product for square matrices.)

Let A, B be $(n \times n)$ -square matrices with real entries.

The $(n \times n)$ -square matrix (AB - BA) is called the Lie product of A, B, and is denoted by (A, B).

Remark. [A, B] 'measures' how far AB and BA differ from each other.

10. Examples on Lie product.

Let
$$J = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, $K = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, $L = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$.

We have
$$JK = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
, $KJ = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$. Then $[J, K] = JK - KJ = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$

L.

Similarly [K, L] = J, and [L, J] = K. (Fill in the detail.)

We also have $[I_n, J] = [I_n, K] = [I_n, L] = \mathcal{O}_{3\times 3}$.

11. Definition. (Invertible matrices.)

Let A be an $(n \times n)$ -square matrix.

- (a) Suppose B is a $(n \times n)$ -square matrix. Further suppose $BA = I_n$ and $AB = I_n$. Then we say B is a matrix inverse of A.
- (b) A is said to be invertible if and only if A has a matrix inverse.

12. Examples on invertible matrices.

(a) The identity matrix is invertible.

(b) Let
$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix}$.

We have $BA = \cdots = I_2$ and $AB = \cdots = I_2$.

Then A is invertible, and B is a matrix inverse of A.

(c) Let
$$A = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 1/2 & 1/2 & -1/\sqrt{2} \\ 1/2 & 1/2 & 1/\sqrt{2} \end{bmatrix}$$
, and $B = \begin{bmatrix} 1/\sqrt{2} & 1/2 & 1/2 \\ -1/\sqrt{2} & 1/2 & 1/2 \\ 0 & -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$.

We have $BA = \cdots = I_3$ and $AB = \cdots = I_3$.

Then A is invertible, and B is a matrix inverse of A.

In (a), we are explaining what 'B is a matrix inverse of A' means, in terms of something introduced previously: (Let A be an $(n \times n)$ -square matrix.) B is a matrix inverse of A exactly when (B is a square matrix and) BA=In and AB=In.

- (a) Suppose B is a $(n \times n)$ -square matrix. Further suppose $BA = I_n$ and $AB = I_n$. Then we say B is a matrix inverse of A.
- (b) A is said to be invertible if and only if A has a matrix inverse. \blacktriangleleft In (6), we are explaining

12. Examples on invertible matrices.

Examples on invertible matrices.

(a) The identity matrix is invertible.

(b) The identity matrix is invertible.

(c) BIn=In=In=In. Also InB=In=In.

(d) The identity matrix is invertible.

(e) BIn=In=In=In. Also InB=In=In.

(b) Let
$$A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix}$.

We have $BA = \cdots = I_2$ and $AB = \cdots = I_2$.

Then A is invertible, and B is a matrix inverse of A.

(c) Let
$$A = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 1/2 & 1/2 & -1/\sqrt{2} \\ 1/2 & 1/2 & 1/\sqrt{2} \end{bmatrix}$$
, and $B = \begin{bmatrix} 1/\sqrt{2} & 1/2 & 1/2 \\ -1/\sqrt{2} & 1/2 & 1/2 \\ 0 & -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$.

We have $BA = \cdots = I_3$ and $AB = \cdots = I_3$.

Then A is invertible, and B is a matrix inverse of A.

Non-examples.

(a) The $(n \times n)$ -zero matrix is not invertible.

Reason: For any $(n \times n)$ -square matrix B, it happens that $\mathcal{O}_{n \times n} B = \mathcal{O}_{n \times n} \neq I_n$.

(b) Let
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
.

Pick any (3×3)-matrix B. Denote the (i, j)-th entry of B by b_{ij} . (So $B = \begin{bmatrix} o_{11} & o_{12} & o_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$.)

We have

$$AB = \dots = \begin{bmatrix} b_{21} + b_{31} & b_{22} + b_{32} & b_{23} + b_{33} \\ b_{31} & b_{32} & b_{33} \\ 0 & 0 & 0 \end{bmatrix}$$

The (3,3)-th entry of AB is 0.

Therefore $AB \neq I_3$. (This happens no matter what B is in the first place.)

Hence A is not invertible.

An $(n\times n)$ -matrix A is not invertible exactly when A does not have a matrix inverse.

Pre-formulation:

No matter which $(n\times n)$ -matrix B is selected, it happens that at least one of BA=In', AB=In' fails to hold.

Non-examples.

(a) The $(n \times n)$ -zero matrix is not invertible.

Reason: For any $(n \times n)$ -square matrix B, it happens that $\mathcal{O}_{n \times n} B = \mathcal{O}_{n \times n} \neq I_n$.

(b) Let
$$A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
. We verify:

No matter which $(3x3)$ - matrix B is selected, it happens that $AB = I_3$ fails to hold.

Pick any (3×3)-matrix B. Denote the (i, j)-th entry of B by b_{ij} . (So $B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$.)

We have

$$AB = \cdots = \begin{bmatrix} b_{21} + b_{31} & b_{22} + b_{32} & b_{23} + b_{33} \\ b_{31} & b_{32} & b_{33} \\ 0 & 0 & 0 \end{bmatrix}$$
 This has no chance to be I_3

The (3,3)-th entry of AB is 0.

Therefore $AB \neq I_3$. (This happens no matter what B is in the first place.) Hence A is not invertible.

(c) Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
.

Pick any (2×2) -matrix B. Denote the (i, j)-th entry of B by b_{ij} . (So $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$.)

We have

$$AB = \dots = \begin{bmatrix} b_{11} + 2b_{21} & b_{12} + 2b_{22} \\ 2b_{11} + 4b_{21} & 2b_{12} + 4b_{22} \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ 2\alpha & 2\beta \end{bmatrix}$$

in which $\alpha = b_{11} + 2b_{21}$ and $\beta = b_{12} + 2b_{22}$.

Then the entries in the first column of AB are all zero, or all non-zero. Therefore $AB \neq I_2$. (This happens no matter what B is in the first place.)

Hence A is not invertible.

Remark.

As suggested by these non-examples on matrix inverse, there is no such thing as the 'Law of Existence of Inverse for matrix multiplication'.

Formally speaking, the statement below is false:

Let n be an integer greater than 1. Suppose A is a non-zero $(n \times n)$ -square matrix. Then there exists some $(n \times n)$ -square matrix B such that $BA = I_n$ and $AB = I_n$.

There is something non-trivial for a square matrix to be invertible.

(c) Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
. We verify:

No matter which $(2x2)$ - matrix is selected,

it happens that 'AB = $\overline{L}z$ ' fails to hold.

Pick any (2×2) -matrix B. Denote the (i, j)-th entry of B by b_{ij} . (So $B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$.)

We have

$$AB = \dots = \begin{bmatrix} b_{11} + 2b_{21} & b_{12} + 2b_{22} \\ 2b_{11} + 4b_{21} & 2b_{12} + 4b_{22} \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ 2\alpha & 2\beta \end{bmatrix}$$

in which $\alpha = b_{11} + 2b_{21}$ and $\beta = b_{12} + 2b_{22}$.

Then the entries in the first column of AB are all zero, or all non-zero. Therefore $AB \neq I_2$. (This happens no matter what B is in the first place.)

Hence A is not invertible.

Remark.

As suggested by these non-examples on matrix inverse, there is no such thing as the 'Law of Existence of Inverse for matrix multiplication'.

Formally speaking, the statement below is false:

Let n be an integer greater than 1. Suppose A is a non-zero $(n \times n)$ -square matrix. Then there exists some $(n \times n)$ -square matrix B such that $BA = I_n$ and $AB = I_n$.

There is something non-trivial for a square matrix to be invertible.

13. **Definition.** (Transpose.)

Let A be an $(m \times n)$ -matrix, whose (i, j)-th entry is denoted by a_{ij} .

The $(n \times m)$ -matrix whose (k, ℓ) -th entry is given by $a_{\ell k}$ is called the transpose of A, and is denoted by A^t .

$$(So\ A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix} \text{ where as } A^t = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ a_{13} & a_{23} & \cdots & a_{m2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}.)$$

13. Definition. (Transpose.)

Let A be an $(m \times n)$ -matrix, whose (i, j)-th entry is denoted by a_{ij} .

The $(n \times m)$ -matrix whose (k, ℓ) -th entry is given by $a_{\ell k}$ is called the transpose of A, and is denoted by A^t .

$$(So\ A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{bmatrix} \text{ where as } A^t = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ a_{13} & a_{23} & \cdots & a_{m3} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}.)$$

$$\vdots + t \quad tow \ A \qquad \qquad i-tt \ clum \ A \qquad \qquad j-tt \ row \ A \qquad j-tt \ row \ A$$

14. Examples on transpose.

Suppose
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 3 & 0 \\ 2 & 1 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 3 \end{bmatrix}$.

Then
$$A^t = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 3 & 2 \end{bmatrix}$$
, $B^t = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 0 & 1 \end{bmatrix}$ and $C^t = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 3 \end{bmatrix}$.

(a) Note that
$$A + B = \begin{bmatrix} 2 & 5 & 3 \\ 2 & 2 & 3 \end{bmatrix}$$
. Then $(A + B)^t = \begin{bmatrix} 2 & 2 \\ 5 & 2 \\ 3 & 3 \end{bmatrix}$

We have
$$A^t + B^t = \cdots = \begin{bmatrix} 2 & 2 \\ 5 & 2 \\ 3 & 3 \end{bmatrix}$$
. So $(A + B)^t = A^t + B^t$ (in this example).

(b) Note that
$$AC = \cdots = \begin{bmatrix} 4 & 13 \\ 2 & 7 \end{bmatrix}$$
. Then $(AC)^t = = \begin{bmatrix} 4 & 2 \\ 13 & 7 \end{bmatrix}$
We have $C^tA^t = \cdots = \begin{bmatrix} 4 & 2 \\ 13 & 7 \end{bmatrix}$. So $(AC)^t = C^tA^t$ (in this example).

15. Definition. (Symmetric matrix and Skew-symmetric matrix.)

Let A be an $(n \times n)$ -square matrix.

- (a) A is said to be symmetric if $A^t = A$.
- (b) A is said to be skew-symmetric if $A^t = -A$.

16. Examples and non-examples on symmetric matrices and skew-symmetric matrices.

- (a) The $(n \times n)$ -zero matrix is a symmetric matrix. It is also a skew-symmetric matrix.
- (b) The identity matrix is a symmetric matrix. It is not skew-symmetric.

(c) Let
$$A = \begin{bmatrix} 1 & 3 & 5 \\ 3 & 2 & 4 \\ 5 & 4 & 6 \end{bmatrix}$$
.

Note that
$$A^t = \begin{bmatrix} 1 & 3 & 5 \\ 3 & 2 & 4 \\ 5 & 4 & 6 \end{bmatrix} = A$$
. Then A is symmetric.

Note that $A^t \neq -A$. Then A is not skew-symmetric.

(d) Let
$$A = \begin{bmatrix} 0 & 1 & 2 \\ -1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix}$$
.

Note that
$$A^t = \begin{bmatrix} 0 & -1 & -2 \\ 1 & 0 & -3 \\ 2 & 3 & 0 \end{bmatrix} = -A$$
. Then A is skew-symmetric.

Note that $A^t \neq A$. Then A is not symmetric.

(e) Let
$$B = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$
. Note that $B^t = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.

We have $B^t \neq B$. Then B is not symmetric.

We have $B^t \neq -B$. Then B is not skew-symmetric.

(f) Let
$$B = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
. Note that $B^t = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

We have $B^t \neq B$. Then B is not symmetric.

We have $B^t \neq -B$. Then B is not skew-symmetric.

17. Definition. (Orthogonal matrix.)

Suppose A be an $(n \times n)$ -square matrix.

Then A is said to be orthogonal if $AA^t = I_n$ and $A^tA = I_n$.

Remark. By definition, an orthogonal matrix is invertible, and its matrix inverse is its transpose.

18. Examples on orthogonal matrices.

(a) The identity matrix is an orthogonal matrix.

(b) Let
$$\theta$$
 be a real number, and $A_{\theta} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$, $B_{\theta} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$.

Note that $A_{\theta}^{t} = B_{\theta}$.

We have $A_{\theta}A_{\theta}^{t} = A_{\theta}B_{\theta} = \cdots = I_{2}$ and $A_{\theta}^{t}A_{\theta} = \ldots = I_{2}$.

Then A_{θ} is an orthogonal matrix.

Similarly, we deduce that B_{θ} is an orthogonal matrix.

(In fact, every (2×2) -orthogonal matrix is given by A_{θ} or B_{θ} for some real number θ .)

(c) Let
$$A = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 1/2 & 1/2 & -1/\sqrt{2}\\ 1/2 & 1/2 & 1/\sqrt{2} \end{bmatrix}$$
.

We have
$$A^t = \begin{bmatrix} 1/\sqrt{2} & 1/2 & 1/2 \\ -1/\sqrt{2} & 1/2 & 1/2 \\ 0 & -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$
.

Then $AA^t = \cdots = I_3$ and $A^tA = \cdots = I_3$.

Therefore A is an orthogonal matrix.

Non-examples.

(a) Let $B = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$. We have $B^t = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$. Then $BB^t = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$.

Note that $BB^t \neq I_2$. Then B is not an orthogonal matrix.

(b) Let
$$B = \begin{bmatrix} 1 & -2 \\ 2 & -4 \end{bmatrix}$$
. We have $B^t = \begin{bmatrix} 1 & 2 \\ -2 & -4 \end{bmatrix}$. Then $BB^t = \begin{bmatrix} 5 & 10 \\ 10 & 20 \end{bmatrix}$.

Note that $BB^t \neq I_2$. Then B is not an orthogonal matrix.