MATH1030 Row operations and matrix multiplication

1. Definition. (‘Standard base’ for a ‘vector space of matrices’)

For each positive integer p,q, and for each ¢ = 1,--- ,p, j = 1,--- ,q, we define the (p x q)-matrix Eﬁ’f to be the

(p X q)-matrix whose (i, j)-th entry is 1 and whose other entries are all 0.

There are altogether pg matrices Ef’ "jq as i,j vary. They are collectively referred to as the ‘standard base’ for the

vector space of (p X q)-matrices.

2. Examples. (‘Standard base’ for various ‘vector spaces of matrices’)
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3. Lemma (1).

Let p, q be positive integers. Suppose s,t are integers between 1 and p.
Let A be a (p x q)-matrix, whose (i, j)-th entry is denoted by a;;.
Then EJf A is the (p x q)-matrix whose s-th row is [ as1 Gz -++  ayq |, and whose every other entry is 0.

Remark. In plain words, multiplying Efy’tp to A from the left results in simultaneously ‘putting’ the ¢-th row of
A into its s-th row and setting to ‘zero’ all other rows of A.
Proof.  For convenience, denote the (g, h)-th entry of ELY by egp,

For each k = 1,2,--- , ¢, the (s, k)-th entry of EYY A is the product of the s-th row of EYf and the k-th column of

A, and therefore is given by
€s101k T Es202k + - - + EspQpk = Qik-

Hence the s-th row of E¥PAis [ an a2 -+ ayg .
Whenever g # s, we have €4, = 0 for each h. Then, no matter which k is, the (g, k)-th entry of Ef)’tpA is a sum of p
copies of 0’s, and hence is 0.

4. Examples. (Illustrations of Lemma (1).)

(a) Suppose A is the (3 x 4)-matrix whose (7, j)-th entry is given by a;;. Then:

33 0 1 0 ai1 Q12 Q13 Q14 @21 QA22 A23 A24
i. E1’2A =10 0 O a1 Q95 G23 Q94 | = 0 0 0
' | 0 0 0 |l a3 a3 ass asg | | 0 0 0 0 |
3.3 [0 0 017 a1 a1z a3 Gai14 ] I 0 0 0 0 i
ii. E3’1A =10 0 O a1 Q95 G23 Q94 | = 0 0 0 0
' |1 0 0 Llas asx asz asg | | @11 Q12 Q13 Q14 |
3.3 I 0 0 O [ a11 Q12 Q13 G14 7 I 0 0 0 0 i
iii. E3’1A = 0 0 O 21 Q22 Q23 Q24 = 0 0 0 0
’ 10 0 1 |las az2 azs assa | | as1 asx ass asg |
(b) Suppose A is the (4 x 6)-matrix whose (4, j)-th entry is given by a;;. Then:
i 0 0 0 0 1T ail a2 a13 14 QA15 Q16 ] r 0 0 0 0 0 0 7
o ptig—=]1 0 0 01 (21 Q22 G23 (24 Q25 G26 | _ | Q41 G42 Q43 Q44 Q45 Q46
2440 T 0 0 0 O a31 Q32 Q33 Aa34 a3z5 0a36 - 0 0 0 0 0 0
L0 0 0 0 || aa1 a2 @43 Gaa Qa5 Q46 | . 6 0 0 0 0 0 |
ro 0 0 07T a11 Q12 i3 A4 ais Qie ] r 0 0 0 0 0 0 7
ii E4,4A _ 0 0 0 O as1 Q22 A23 Q24 Q25 Q24 _ 0 0 0 0 0 0
22— 10 1 00 a3l @32 G33 A34 Q35 G36 | | Q21 G22 A3 Qg4 Q25 A6
L0 0 0 0 [ an aa2 Qa3 Gaa Qa5 Qa6 | L 0 06 0o 0 0 0 |
o 0 0 07T a11 Q12 a3 a14 ais Qile T [0 0 0 0 0 0 7
E4,4A _ 0 0 0 O 21 A22 A23 0A24 A25 Q926 _ 0 0 0 0 0 0
W L414=10 0 0 0 as] aso G33 Q34 a35 0a36 - 0 0 0 0 0 0
L1 0 0 0 [ an G2 @43 Qa4 Q45 Q46 | L @11 @12 Q13 Q14 ais Q16 |




5. Lemma (2).
Let A be an (p, q)-matrix. Let i,k be integers between 1 and p.

(a) For any real number «, the resultant of the row operation aR; + Ry, on A is (I, + aEﬁ”f)A.
(b) For any non-zero real number 3, the resultant of the row operation SRy, on A is (I, + (8 — 1) EY’}) A.
(c) The resultant of the row operation R; <+ Ry, on A is (I, — B} — Ep’p + EJY + Ep7)A.
Proof. Exercise. (Straightforward calculation with the help of Lemma (1).)
6. Examples. (Illustrations of Lemma (2).)

Suppose A is the (3 x 4)-matrix whose (4, j)-th entry is given by a,;. Then:
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0 0 0 0
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7. Definition. (Row operation matrices.)

Let p be a positive integer, and M be a (p, p)-square matrix.

The matrix M is called a row-operation matrix of size p if any one of the statements below holds:

(a) M =1I,+ aEY? for some real number o and some distinct integers i, k between 1 and p.

(b) M =1, + (8 — 1)E}7}, for some non-zero real number 3 and some integer k between 1 and p.

(c) M =1, Ef — Epp + E}F + Ep} for some distinct integers i, k.
Remark. Now we know that the effect of applying a certain row operation on a matrix, say, A, is the same as
multiplying A by some row operation matrix from the left.
In fact such a square matrix is uniquely determined by the row operation concerned; it is independent of A.
Theorem (3) below describes a ‘dictionary’ between the collection of all row operations on matrices with p rows and
the collection of all row-operation matrices of size p. This ‘dictionary’ tells us the ‘application of row operations’
and the ‘multiplication from the left by row-operation matrices’ are two ways of thinking about the same thing.

8. Theorem (3). (‘Dictionary’ between row operations and matrix multiplication from the left.)

Let p, q be positive integers.

For any row operation p on (p X q)-matrices, there exists some unique (p X p)-square matrix M|p] such that for any
(p X q)-matrix A, the matrix M|[p|A is the resultant of the application of p on A.



Proof. A tedious word game, with reference to the definitions for the notion of row operations and for the notion
of row-operation matrices. (For MATH/BMED students, this is an exercise in MATH1050. First find out what is

required to be proved.)

Remark. The table below summarizes the correspondence between row operations and row-operation matrices:

Row operation How (' is obtained from C ‘Reverse’ row operation How C is recovered from C’
changing C to C". through row-operation matrix. changing C’ to C. through row-operation matrix.
¢ 2t o, C' = (I, + aE}P)C [C=CERING] C = (I, — aBPT)C
o2 o, O =[I,+ (8- 1)EPTIC SR SLILING] C=1[I,+(1/8 - )EPY|C"
c 2oy o | ¢ = (I, ~ EPP - EL? + EPP + ELP)C L ING) C = (I, — B} — EV? + BV + ELY)C

9. Corollary (4).
Let C1,C5, -+ ,Cn be (p X q)-matrices.

Suppose C is row-equivalent to C, and are joint by some sequence of row operations p1,p2, -+ , pPN—1:

Cl—)CQ—)"' — ON—l — ON
P1 P2 PN-—2 PN—-1

Then there exist row-operation matrices Hy, Ho,--- , Hy_1 of size p such that Cy = Hy_1Hy_o--- HyHC1.

Proof. This is an immediate consequence of Theorem (3).

10. Examples. (Illustrations on Corollary (4).)

(a) The sequence of row operations below joins C' and C”:

101 1 1 3 45 5
C=10 2 1 1 |XatB ov_ o | Mt o _ | 1 2 2 2
100 2 2 100 2

OO OO

O
OO oM

1 2 0
Then C” = HyH,C, in which H; = JHy=|0 1 0.
0 0 1
3 2 0
So C’”:HC’, in WthhH:H2H1: 6 é (1) .

(b) The sequence of row operations below joins C' and C”':

12 2 17 . 12 2 —17 _,, 2 4 —4 2
C=|2 -2 1 0 =,0'=18 -8 4 0 —— L= 8 -8 4 0.
1 0 0 2 1 0 0 2 1 0 0 2
1 0 0 -2 0 0
Then C"” = HyH{C,in which Hy=| 0 4 0 |,H,=| 0 1 0 |.
0 0 1 0 0 1
-2 0 0
So C"” = HC, in which H = H H; = 8 g (1)

(¢) The sequence of row operations below joins C' and C”:

col3 0 51| mem o |15 5 ¢ memo (3] 1]
2 1 01 2 1 01 1 2 2 0
01 0 1 0 0
Then C"” = HoH{C,inwhich Hy=|1 0 0 |,Hy=|0 0 1 |[.
0 0 1 01 0
01 0
So C"”" = HC,in which H=HsH;=| 0 0 1 |.
1 0 0
(d) The sequence of row operations below joins C and C":
1 0 1 1 1 0 1 1 0 1 1 2 0
c=]02 1 1 |ty 1 2 2 2 |2yor_ |1 2 2 2| B2l om_| 7 9
1 0 0 2 1 0 0 2 2 0 0 4 1 0
1 0 0 1 0 0 0 0 1
Then C" = HyHyHyC, inwhich Hy= | 1 1 0 |, Hy=|0 1 0| Hs=|0 1 0
0 0 1 0 0 2 1 0 0
0 0 2
So C" = HO, in which H = H3H2H1 = % 6 8 .



