
MATH1030 Row operations and matrix multiplication

1. Definition. (‘Standard base’ for a ‘vector space of matrices’.)
For each positive integer p, q, and for each i = 1, · · · , p, j = 1, · · · , q, we define the (p × q)-matrix Ep,q

i,j to be the
(p× q)-matrix whose (i, j)-th entry is 1 and whose other entries are all 0.
There are altogether pq matrices Ep,q

i,j as i, j vary. They are collectively referred to as the ‘standard base’ for the
vector space of (p× q)-matrices.

2. Examples. (‘Standard base’ for various ‘vector spaces of matrices’.)

(a) E2,3
1,1 =

[
1 0 0
0 0 0

]
, E2,3

1,2 =
[
0 1 0
0 0 0

]
, E2,3

1,3 =
[
0 0 1
0 0 0

]
,

E2,3
2,1 =

[
0 0 0
1 0 0

]
, E2,3

2,2 =
[
0 0 0
0 1 0

]
, E2,3

2,3 =
[
0 0 0
0 0 1

]
.

(b) E3,3
1,1 =

[
1 0 0
0 0 0
0 0 0

]
, E3,3

1,2 =

[
0 1 0
0 0 0
0 0 0

]
, E3,3

1,3 =

[
0 0 1
0 0 0
0 0 0

]
,

E3,3
2,1 =

[
0 0 0
1 0 0
0 0 0

]
, E3,3

2,2 =

[
0 0 0
0 1 0
0 0 0

]
, E2,3

2,3 =

[
0 0 0
0 0 1
0 0 0

]
,

E3,3
3,1 =

[
0 0 0
0 0 0
1 0 0

]
, E3,3

3,2 =

[
0 0 0
0 0 0
0 1 0

]
, E3,3

3,3 =

[
0 0 0
0 0 0
0 0 1

]
.

3. Lemma (1).
Let p, q be positive integers. Suppose s, t are integers between 1 and p.
Let A be a (p× q)-matrix, whose (i, j)-th entry is denoted by aij .
Then Ep,p

s,t A is the (p× q)-matrix whose s-th row is [ at1 at2 · · · atq ], and whose every other entry is 0.

Remark. In plain words, multiplying Ep,p
s,t to A from the left results in simultaneously ‘putting’ the t-th row of

A into its s-th row and setting to ‘zero’ all other rows of A.
Proof. For convenience, denote the (g, h)-th entry of Ep,p

s,t by εgh

For each k = 1, 2, · · · , q, the (s, k)-th entry of Ep,p
s,t A is the product of the s-th row of Ep,p

s,t and the k-th column of
A, and therefore is given by

εs1a1k + εs2a2k + · · ·+ εspapk = atk.

Hence the s-th row of Ep,p
s,t A is [ at1 at2 · · · atq ].

Whenever g ̸= s, we have εgh = 0 for each h. Then, no matter which k is, the (g, k)-th entry of Ep,p
s,t A is a sum of p

copies of 0’s, and hence is 0.

4. Examples. (Illustrations of Lemma (1).)

(a) Suppose A is the (3× 4)-matrix whose (i, j)-th entry is given by aij . Then:

i. E3,3
1,2A =

[
0 1 0
0 0 0
0 0 0

][ a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

]
=

[
a21 a22 a23 a24
0 0 0 0
0 0 0 0

]
.

ii. E3,3
3,1A =

[
0 0 0
0 0 0
1 0 0

][ a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

]
=

[
0 0 0 0
0 0 0 0
a11 a12 a13 a14

]
.

iii. E3,3
3,1A =

[
0 0 0
0 0 0
0 0 1

][ a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

]
=

[
0 0 0 0
0 0 0 0
a31 a32 a33 a34

]
(b) Suppose A is the (4× 6)-matrix whose (i, j)-th entry is given by aij . Then:

i. E4,4
2,4A =

 0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46

 =

 0 0 0 0 0 0
a41 a42 a43 a44 a45 a46
0 0 0 0 0 0
0 0 0 0 0 0

.

ii. E4,4
3,2A =

 0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46

 =

 0 0 0 0 0 0
0 0 0 0 0 0
a21 a22 a23 a24 a25 a26
0 0 0 0 0 0

.

iii. E4,4
4,1A =

 0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46

 =

 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
a11 a12 a13 a14 a15 a16

.
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5. Lemma (2).
Let A be an (p, q)-matrix. Let i, k be integers between 1 and p.

(a) For any real number α, the resultant of the row operation αRi +Rk on A is (Ip + αEp,p
k,i )A.

(b) For any non-zero real number β, the resultant of the row operation βRk on A is (Ip + (β − 1)Ep,p
k,k)A.

(c) The resultant of the row operation Ri ↔ Rk on A is (Ip − Ep,p
i,i − Ep,p

k,k + Ep,p
i,k + Ep,p

k,i )A.

Proof. Exercise. (Straightforward calculation with the help of Lemma (1).)

6. Examples. (Illustrations of Lemma (2).)
Suppose A is the (3× 4)-matrix whose (i, j)-th entry is given by aij . Then:

(a)

A
4R2+R1−−−−−→

[ 4a21 + a11 4a22 + a12 4a23 + a13 4a24 + a14
a21 a22 a23 a24
a31 a32 a33 a34

]

= 4

[
a21 a22 a23 a24
0 0 0 0
0 0 0 0

]
+

[ a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

]
= 4E3,3

1,2A+A = (I3 + 4E3,3
1,2)A

(b)

A
R1↔R3−−−−−→

[ a31 a32 a33 a34
a21 a22 a23 a24
a11 a12 a13 a14

]

=

[ a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

]
−

[
a11 a12 a13 a14
0 0 0 0
0 0 0 0

]
−

[
0 0 0 0
0 0 0 0
a31 a32 a33 a34

]

+

[
a31 a32 a33 a34
0 0 0 0
0 0 0 0

]
+

[
0 0 0 0
0 0 0 0
a11 a12 a13 a14

]
= A− E3,3

1,1A− E3,3
3,3A+ E3,3

1,1A+ E3,3
3,3A = (I3 − E3,3

1,1 − E3,3
3,3 + E3,3

1,3 + E3,3
3,3)A.

(c)

A
5R2−−→

[ a11 a12 a13 a14
5a21 5a22 5a23 5a24
a31 a32 a33 a34

]

=

[ a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

]
+ 4

[
0 0 0 0
a21 a22 a23 a24
0 0 0 0

]
= A+ 4E3,3

2,2A = (I3 + 4E3,3
2,2)A

7. Definition. (Row operation matrices.)
Let p be a positive integer, and M be a (p, p)-square matrix.
The matrix M is called a row-operation matrix of size p if any one of the statements below holds:

(a) M = Ip + αEp,p
k,i for some real number α and some distinct integers i, k between 1 and p.

(b) M = Ip + (β − 1)Ep,p
k,k for some non-zero real number β and some integer k between 1 and p.

(c) M = Ip − Ep,p
i,i − Ep,p

k,k + Ep,p
i,k + Ep,p

k,i for some distinct integers i, k.

Remark. Now we know that the effect of applying a certain row operation on a matrix, say, A, is the same as
multiplying A by some row operation matrix from the left.
In fact such a square matrix is uniquely determined by the row operation concerned; it is independent of A.
Theorem (3) below describes a ‘dictionary’ between the collection of all row operations on matrices with p rows and
the collection of all row-operation matrices of size p. This ‘dictionary’ tells us the ‘application of row operations’
and the ‘multiplication from the left by row-operation matrices’ are two ways of thinking about the same thing.

8. Theorem (3). (‘Dictionary’ between row operations and matrix multiplication from the left.)
Let p, q be positive integers.
For any row operation ρ on (p× q)-matrices, there exists some unique (p× p)-square matrix M [ρ] such that for any
(p× q)-matrix A, the matrix M [ρ]A is the resultant of the application of ρ on A.

2



Proof. A tedious word game, with reference to the definitions for the notion of row operations and for the notion
of row-operation matrices. (For MATH/BMED students, this is an exercise in MATH1050. First find out what is
required to be proved.)
Remark. The table below summarizes the correspondence between row operations and row-operation matrices:

Row operation
changing C to C ′.

How C ′ is obtained from C
through row-operation matrix.

‘Reverse’ row operation
changing C ′ to C.

How C is recovered from C ′

through row-operation matrix.
C

αRi+Rk−−−−−→ C ′. C ′ = (Ip + αEp,p
k,i )C C ′ −αRi+Rk−−−−−−−→ C. C = (Ip − αEp,p

k,i )C
′

C
βRk−−−→ C ′. C ′ = [Ip + (β − 1)Ep,p

k,k]C C ′ (1/β)Rk−−−−−→ C. C = [Ip + (1/β − 1)Ep,p
k,k]C

′

C
Ri↔Rk−−−−−→ C ′. C ′ = (Ip − Ep,p

i,i − Ep,p
k,k + Ep,p

i,k + Ep,p
k,i )C C ′ Ri↔Rk−−−−−→ C. C = (Ip − Ep,p

i,i − Ep,p
k,k + Ep,p

i,k + Ep,p
k,i )C

′

9. Corollary (4).
Let C1, C2, · · · , CN be (p× q)-matrices.
Suppose C1 is row-equivalent to CN , and are joint by some sequence of row operations ρ1, ρ2, · · · , ρN−1:

C1 −→
ρ1

C2 −→
ρ2

· · · −→
ρN−2

CN−1 −→
ρN−1

CN

Then there exist row-operation matrices H1,H2, · · · ,HN−1 of size p such that CN = HN−1HN−2 · · ·H2H1C1.
Proof. This is an immediate consequence of Theorem (3).

10. Examples. (Illustrations on Corollary (4).)

(a) The sequence of row operations below joins C and C ′′:

C =

[
1 0 1 1
0 2 1 1
1 0 0 2

]
1R1+R2−−−−−→ C ′ =

[
1 0 1 1
1 2 2 2
1 0 0 2

]
2R2+R1−−−−−→ C ′′ =

[
3 4 5 5
1 2 2 2
1 0 0 2

]
.

Then C ′′ = H2H1C, in which H1 =

[
1 0 0
1 1 0
0 0 1

]
, H2 =

[
1 2 0
0 1 0
0 0 1

]
.

So C ′′ = HC, in which H = H2H1 =

[
3 2 0
1 1 0
0 0 1

]
.

(b) The sequence of row operations below joins C and C ′′:

C =

[
1 2 2 −1
2 −2 1 0
1 0 0 2

]
4R2−−→ C ′ =

[
1 2 2 −1
8 −8 4 0
1 0 0 2

]
−2R1−−−→ C ′′ =

[
−2 −4 −4 2
8 −8 4 0
1 0 0 2

]
.

Then C ′′ = H2H1C, in which H1 =

[
1 0 0
0 4 0
0 0 1

]
, H2 =

[
−2 0 0
0 1 0
0 0 1

]
.

So C ′′ = HC, in which H = H2H1 =

[
−2 0 0
0 4 0
0 0 1

]
.

(c) The sequence of row operations below joins C and C ′′:

C =

[
1 2 2 0
3 0 3 1
2 1 0 1

]
R1↔R2−−−−−→ C ′ =

[
3 0 3 1
1 2 2 0
2 1 0 1

]
R2↔R3−−−−−→ C ′′ =

[
3 0 3 1
2 1 0 1
1 2 2 0

]
.

Then C ′′ = H2H1C, in which H1 =

[
0 1 0
1 0 0
0 0 1

]
, H2 =

[
1 0 0
0 0 1
0 1 0

]
.

So C ′′ = HC, in which H = H2H1 =

[
0 1 0
0 0 1
1 0 0

]
.

(d) The sequence of row operations below joins C and C ′′′:

C =

[
1 0 1 1
0 2 1 1
1 0 0 2

]
1R1+R2−−−−−→ C ′ =

[
1 0 1 1
1 2 2 2
1 0 0 2

]
2R3−−→ C ′′ =

[
1 0 1 1
1 2 2 2
2 0 0 4

]
R1↔R3−−−−−→ C ′′′ =

[
2 0 0 4
1 2 2 2
1 0 1 1

]
.

Then C ′′′ = H3H2H1C, in which H1 =

[
1 0 0
1 1 0
0 0 1

]
, H2 =

[
1 0 0
0 1 0
0 0 2

]
, H3 =

[
0 0 1
0 1 0
1 0 0

]
.

So C ′′′ = HC, in which H = H3H2H1 =

[
0 0 2
1 1 0
1 0 0

]
.
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