1. Definition. (‘Standard base’ for a ‘vector space of matrices’)

For each positive integer p, q, and for eacht = 1,--- ,p, 7 =1,--- ,q, we define the (p X q)-
matrix B} to be the (p x q)-matrix whose (i, j)-th entry is 1 and whose other entries are
all 0.

There are altogether pq matrices I as i, j vary.

They are collectively referred to as the ‘standard base’ for the vector space of (p X q)-
matrices.

2. Examples. (‘Standard base’ for various ‘vector spaces of matrices’.)

(100 (010 (001

28 _ 28 _ 28 _
@ET=1000lE2= 00l E3= 1000
(000 (000 (000
28 _ 28 _ 28 _ |
2,1 100 %2 010/ 7323 001
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3. Lemma (1).
Let p, q be positive integers. Suppose s,t are integers between 1 and p.
Let A be a (p x q)-matrix, whose (1, j)-th entry is denoted by a;;.
Then EU{ A is the (p x q)-matrix whose s-th row is

[atl agp - - - atq]a

and whose every other entry is 0.

Remark. In plain words, multiplying E¢} to A from the left results in simultaneously
‘putting’ the t-th row of A into its s-th row and setting to ‘zero’ all other rows of A.

Proof.  For convenience, denote the (g, h)-th entry of B by ey,

For each k = 1,2,--- ,q, the (s, k)-th entry of B A is the product of the s-th row of £
and the k-th column of A, and therefore is given by

Es1@1k T Es2A0) 1+ + Esplpk = Qtf;-

Hence the s-th row of EL7Y A is [ ap Gy -+ Gy ]

Whenever g # s, we have €., = 0 for each h. Then, no matter which & is, the (g, k)-th
entry of B[ A is a sum of p copies of 0's, and hence is 0.
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‘putting’ the t-th row of A into its s-th row and setting to ‘zero” all other rows of A.

Proof.  For convenience, denote the (g, h)-th entry of [} by €,
Foreach k = 1,2,--- g, the (s, k)-th entry of ¢/ A is the product of the s-th row of EVY
and the k-th column of A, and therefore is given by

Es1A1k T Es2U2f & ==+ Esplpk — Q-

Hence the s-th row of EPTA is [ Qg Gpg-~ -~ Gy } .
Whenever g # s, we have €4, = 0 for cach h. Then, no matter which & is, the (g, k)-th

entry of VA s a sum of p copies of 0's; and hence is 0.



4. Examples. (Illustrations of Lemma (1).)

(a) Suppose A is the (3 x 4)-matrix whose (7, 7)-th entry is given by a;;. Then:

010/ a a2 a13 aus (21 Q22 A3 A4
LESA= 000 |axy amagan|=][0 0 0 0
000 a3z1 A3z A33 A3z4 0 0 0 0
_OOO_ -CL11 ai12 a13 CL14_ I 0 0 0 0 |
i E57A= {000 |an amagan|=|0 0 0 0
100 [as az ass as | |11 a2 413 Ay |
-OOO- -CL11 ai2 ai13 CL14- I 0 0 0 0 |
111. Eg:fA = 1000 a1 A9 93 A9yg | = 0O 0 0 O
00 1] [ a3 az asz as | | a31 a3 a33 G34 |



4. Examples. (Illustrations of Lemma (1).)

a) Suppose A is the (3 x 4)-matrix whose (7, 7)-th entry is given by a;;. Then:
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(b) Suppose A is the (4 x 6)-matrix whose (¢, j)-th entry is given by a;;. Then:
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5. Lemma (2).
Let A be an (p, q)-matrix. Let i, k be integers between 1 and p.
(a) For any real number «, the resultant of the row operation aR;+ Ry, on A is (I,+aE}) A.

(b) For any non-zero real number 3, the resultant of the row operation SRy on A is (I, +
(6 = DE;)A.

(¢) The resultant of the row operation R; <+ Ry on A is (I, — Ej'f — B0+ B + Ep) A
Proof.  Exercise. (Straightforward calculation with the help of Lemma (1).)

6. Examples. (Illustrations of Lemma (2).)

Suppose A is the (3 x 4)-matrix whose (¢, j)-th entry is given by a;;. Then:

4&21 + a1 4&22 + a9 4&23 + a3 4&24 + a4
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0O 0 0 0 az; azp a3z A4




5. Lemma (2).
Let A be an (p, q)-matrix. Let i, k be integers between 1 and p.
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7. Definition. (Row operation matrices.)
Let p be a positive integer, and M be a (p, p)-square matrix.

The matrix M is called a row-operation matrix of size p if any one of the statements below
holds:

(a) M =1, + ozng for some real number o and some distinct integers i, k between 1 and
.

(b) M = I, + (8 — 1) E}’}; for some non-zero real number 8 and some integer k between 1
and p.

(c) M =1, — El — By + Ej7 + B} for some distinet integers i, k.

Remark. Now we know that the effect of applying a certain row operation on a matrix,
say, A, is the same as multiplying A by some row operation matrix from the left.

In fact such a square matrix is uniquely determined by the row operation concerned; it is
independent of A.

Theorem (3) below describes a ‘dictionary’ between the collection of all row operations
on matrices with p rows and the collection of all row-operation matrices of size p. This

‘dictionary’ tells us the ‘application of row operations’ and the ‘multiplication from the lett
by row-operation matrices’ are two ways of thinking about the same thing.



8. Theorem (3). (‘Dictionary’ between row operations and matrix multipli-
cation from the left.)

Let p, g be positive integers.

For any row operation p on (p X q)-matrices, there exists some unique (p X p)-square
matrix M |p| such that for any (p x q)-matrix A, the matrix M |p]A is the resultant of the
application of p on A.

Proof. A tedious word game, with reference to the definitions for the notion of row
operations and for the notion of row-operation matrices.

Remark. The table below summarizes the correspondence between row operations and
row-operation matrices:

Row operation How C’ is obtained from C' ‘Reverse’ row operation How C' is recovered from C’
changing C' to C". through row-operation matrix. changing C’ to C. through row-operation matrix.
o At o C' = (I, + aE'")C o it o C = (I, — aE}7)C"
o M o O =[I,+ (B — 1) EM|C e RlliNG) C = [I,+(1/8 = 1)ELC!
C B0 o O = (I, - B — EM 4 EYY + EI)C ¢ B oo 0= (I, ~ E'P — EM 4 B 4 B




9. Corollary (4).
Let C1,Cs, -+ ,Cx be (p X q)-matrices.
Suppose C is row-equivalent to C'y, and are joint by some sequence of row operations
P1, P2, 5 PN-1:

Cl >Cg >"°%ON_1—>ON
P1 P2 PN -2 PN-1

Then there exist row-operation matrices Hy, Hy,--- , Hyx_1 of size p such that Cy =
Hy_1Hy_9--- HoH,Ch.

Proof. This is an immediate consequence of Theorem (3).



9. Corollary (4).
Let Cy,Cy, -+ ,Cy be (p X q)-matrices.

Suppose Cy is row-equivalent to Cy, and are joint by some sequence of row operations

vpla P2, y PN—1-

01—%CQ—>"'——>CN_1——>ON
P1 P2 PN—2 PN—-1

Then there exist row-operation matrices Hy, Ho, -+, Hy_1 of size p such that Cn =
Hy_1Hy_g--- HyH Oy ,; |

Proof.  This'is an immediate consequence of Theorem (3). m
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10. Examples. (Illustrations on Corollary (4).)

(a) The sequence of row operations below joins C' and C”:

O —

(1011]
021 1

1002

1R1+Ry
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Then C// = ]‘[2[{16'7 n Wthh H1 = 11 O , H2 =
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(b) The sequence of row operations below joins C' and C":

C=1]12-210
I 0 0 2

Then C// = HngC, in which Hl — 040

(1 9 2 1]

4R9
—

' =

(1 92 2 1] 9 4 —4 2]
8 -84 0 | 2= 8 -8 4 0]
100 2 1 0 0 2
(100 200
Hy=1|0 10/
00 1 0 01
200

So C"=HC,inwhich H=HH;=| 0 40

0 01




(¢) The sequence of row operations below joins C' and C":

(1990 (3031 (3031
C=|3031| 222 _ {1900 228 cv_ 2101
2101 210 1 1290
(010 (100
ThGHC//:Hngc,iHWhiChle 1 00 ,HQZ 00T1]/{.
001 010
(010 ]

So C" = HC,in which H=HH,= |00 1|.
100




(d) The sequence of row operations below joins C' and C"":

O —

Ri+R
1 3 C/// _

Then C"" = HsHoH;C', in which H; =

SO Cm = HC, in which H = H3H2H1 =
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