1. Definition. ('Standard base' for a 'vector space of matrices'.)

For each positive integer p, q, and for each $i = 1, \dots, p, j = 1, \dots, q$, we define the $(p \times q)$ -matrix $E_{i,j}^{p,q}$ to be the $(p \times q)$ -matrix whose (i, j)-th entry is 1 and whose other entries are all 0.

There are altogether pq matrices $E_{i,j}^{p,q}$ as i, j vary.

They are collectively referred to as the 'standard base' for the vector space of $(p \times q)$ -matrices.

2. Examples. ('Standard base' for various 'vector spaces of matrices'.)

(a)
$$E_{1,1}^{2,3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
, $E_{1,2}^{2,3} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $E_{1,3}^{2,3} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$,
 $E_{2,1}^{2,3} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, $E_{2,2}^{2,3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$, $E_{2,3}^{2,3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

1. Definition. ('Standard base' for a 'vector space of matrices'.)

For each positive integer p, q, and for each $i = 1, \dots, p, j = 1, \dots, q$, we define the $(p \times q)$ matrix $E_{i,j}^{p,q}$ to be the $(p \times q)$ -matrix whose (i, j)-th entry is 1 and whose other entries are
all 0.

There are altogether pq matrices $E_{i,j}^{p,q}$ as i, j vary. They are collectively referred to as the 'standard base' for the vector space of $(p \times q)$ matrices.

2. Examples. ('Standard base' for various 'vector spaces of matrices'.) (a) $E_{1,1}^{2,3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $E_{1,2}^{2,3} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $E_{1,3}^{2,3} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$, $E_{2,1}^{2,3} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, $E_{2,2}^{2,3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$, $E_{2,3}^{2,3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

3. Lemma (1).

Let p, q be positive integers. Suppose s, t are integers between 1 and p. Let A be a $(p \times q)$ -matrix, whose (i, j)-th entry is denoted by a_{ij} . Then $E_{s,t}^{p,p}A$ is the $(p \times q)$ -matrix whose s-th row is

$$\left[\begin{array}{cccc}a_{t1} & a_{t2} & \cdots & a_{tq}\end{array}\right],$$

and whose every other entry is 0.

Remark. In plain words, multiplying $E_{s,t}^{p,p}$ to A from the left results in simultaneously 'putting' the *t*-th row of A into its *s*-th row and setting to 'zero' all other rows of A.

Proof. For convenience, denote the (g, h)-th entry of $E_{s,t}^{p,p}$ by ε_{gh} For each $k = 1, 2, \dots, q$, the (s, k)-th entry of $E_{s,t}^{p,p}A$ is the product of the *s*-th row of $E_{s,t}^{p,p}$ and the *k*-th column of *A*, and therefore is given by

$$\varepsilon_{s1}a_{1k} + \varepsilon_{s2}a_{2k} + \dots + \varepsilon_{sp}a_{pk} = a_{tk}.$$

Hence the s-th row of $E_{s,t}^{p,p}A$ is $[a_{t1} \ a_{t2} \ \cdots \ a_{tq}]$.

Whenever $g \neq s$, we have $\varepsilon_{gh} = 0$ for each h. Then, no matter which k is, the (g, k)-th entry of $E_{s,t}^{p,p}A$ is a sum of p copies of 0's, and hence is 0.

3. Lemma (1).

Let p, q be positive integers. Suppose s, t are integers between 1 and p. Let A be a $(p \times q)$ -matrix, whose (i, j)-th entry is denoted by a_{ij} . Then $E_{s,t}^{p,p}A$ is the $(p \times q)$ -matrix whose s-th row is

$$\left[\begin{array}{ccc}a_{t1} & a_{t2} & \cdots & a_{tq}\end{array}\right],$$

t-th row d

 $\frac{P \cdot P}{E_{s+t}} = \frac{1}{a_{t1} \cdots a_{tq}} = \frac{1}{a_{t1} \cdots a_{tq}}$

t-throw of A

and whose every other entry is 0.

Remark. In plain words, multiplying $E_{s,t}^{p,p}$ to A from the left results in simultaneously 'putting' the *t*-th row of A into its *s*-th row and setting to 'zero' all other rows of A.

Proof. For convenience, denote the (g, h)-th entry of $E_{s,t}^{p,p}$ by ε_{gh} For each $k = 1, 2, \dots, q$, the (s, k)-th entry of $E_{s,t}^{p,p}A$ is the product of the *s*-th row of $E_{s,t}^{p,p}$ and the *k*-th column of *A*, and therefore is given by

$$\varepsilon_{s1}a_{1k} + \varepsilon_{s2}a_{2k} + \dots + \varepsilon_{sp}a_{pk} = a_{tk}$$

Hence the *s*-th row of $E_{s,t}^{p,p}A$ is $\begin{bmatrix} a_{t1} & a_{t2} & \cdots & a_{tq} \end{bmatrix}$.

Whenever $g \neq s$, we have $\varepsilon_{gh} = 0$ for each h. Then, no matter which k is, the (g, k)-th entry of $E_{s,t}^{p,p}A$ is a sum of p copies of 0's, and hence is 0.

4. Examples. (Illustrations of Lemma (1).)

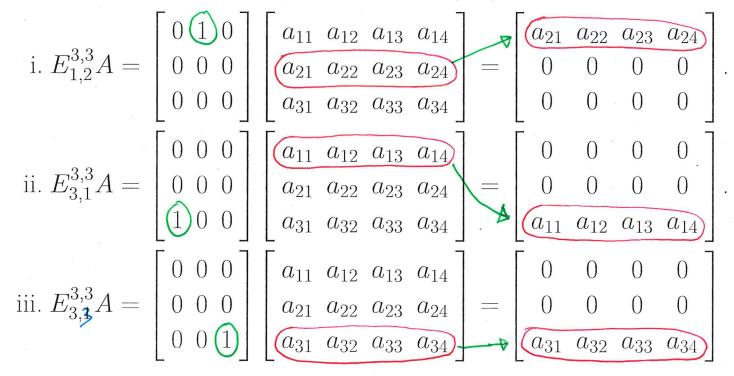
(a) Suppose A is the (3×4) -matrix whose (i, j)-th entry is given by a_{ij} . Then:

$$i. E_{1,2}^{3,3}A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \begin{bmatrix} a_{21} & a_{22} & a_{23} & a_{24} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

$$ii. E_{3,1}^{3,3}A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ a_{11} & a_{12} & a_{13} & a_{14} \\ a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & 0 & 0 & 0 \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$

4 Examples. (Illustrations of Lemma (1).)

(a) Suppose A is the (3×4) -matrix whose (i, j)-th entry is given by a_{ij} . Then:



(b) Suppose A is the (4×6) -matrix whose (i, j)-th entry is given by a_{ij} . Then:

•

5. Lemma (2).

Let A be an (p,q)-matrix. Let i, k be integers between 1 and p.

(a) For any real number α, the resultant of the row operation αR_i+R_k on A is (I_p+αE^{p,p}_{k,i})A.
(b) For any non-zero real number β, the resultant of the row operation βR_k on A is (I_p + (β - 1)E^{p,p}_{k,k})A.

(c) The resultant of the row operation $R_i \leftrightarrow R_k$ on A is $(I_p - E_{i,i}^{p,p} - E_{k,k}^{p,p} + E_{i,k}^{p,p})A$.

Proof. Exercise. (Straightforward calculation with the help of Lemma (1).)

6. Examples. (Illustrations of Lemma (2).)

Suppose A is the (3×4) -matrix whose (i, j)-th entry is given by a_{ij} . Then: (a)

$$A \xrightarrow{4R_2+R_1} \begin{bmatrix} 4a_{21}+a_{11} & 4a_{22}+a_{12} & 4a_{23}+a_{13} & 4a_{24}+a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$
$$= 4\begin{bmatrix} a_{21} & a_{22} & a_{23} & a_{24} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = 4E_{1,2}^{3,3}A + A = (I_3 + 4E_{1,2}^{3,3})A$$

5. Lemma (2).

Let A be an (p,q)-matrix. Let i, k be integers between 1 and p.

(a) For any real number α , the resultant of the row operation $\alpha R_i + R_k$ on A is $(I_p + \alpha E_{k,i}^{p,p})A$.

- (b) For any non-zero real number β , the resultant of the row operation βR_k on A is $(I_p + (\beta 1)E_{k,k}^{p,p})A$.
- (c) The resultant of the row operation $R_i \leftrightarrow R_k$ on A is $(I_p E_{i,i}^{p,p} E_{k,k}^{p,p} + E_{i,k}^{p,p})A$.

Proof. Exercise. (Straightforward calculation with the help of Lemma (1).)

6. Examples. (Illustrations of Lemma (2).)

Suppose A is the (3×4) -matrix whose (i, j)-th entry is given by a_{ij} . Then:

(a)

$$A \xrightarrow{4R_2+R_1} \begin{bmatrix} 4a_{21} + a_{11} & 4a_{22} + a_{12} & 4a_{23} + a_{13} & 4a_{24} + a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} \\ = 4 \begin{bmatrix} a_{21} & a_{22} & a_{23} & a_{24} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = 4E_{1,2}^{3,3}A + A = \underbrace{(I_3 + 4E_{1,2}^{3,3})A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,3}A + A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,3}A + A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,3}A + A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,3}A + A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,3}A + A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,3}A + A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,3}A + A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,3}A + A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,3}A + A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,3}A + A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,3}A + A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,3}A + A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,3}A + A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,3}A + A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,3}A + A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,3}A + A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,3}A + A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,3}A + A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,3}A + A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,3}A + A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,3}A + A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,3}A + A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,3}A + A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,3}A + A}_{\text{This do a example of the structure}} A = \underbrace{I_{1,2}^{3,$$

$$A \xrightarrow{R_1 \leftrightarrow R_3} \begin{bmatrix} a_{31} & a_{32} & a_{33} & a_{34} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{11} & a_{12} & a_{13} & a_{14} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} - \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$

$$+ \begin{bmatrix} a_{31} & a_{32} & a_{33} & a_{34} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ a_{11} & a_{12} & a_{13} & a_{14} \end{bmatrix}$$

$$= A - E_{1,1}^{3,3}A - E_{3,3}^{3,3}A + E_{1,1}^{3,3}A + E_{3,3}^{3,3}A = (I_3 - E_{1,1}^{3,3} - E_{3,3}^{3,3} + E_{1,1}^{3,3})A.$$

(c)

$$A \xrightarrow{5R_2} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ 5a_{21} & 5a_{22} & 5a_{23} & 5a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$
$$= \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} + 4 \begin{bmatrix} 0 & 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} & a_{24} \\ 0 & 0 & 0 & 0 \end{bmatrix} = A + 4E_{2,2}^{3,3}A = (I_3 + 4E_{2,2}^{3,3})A$$

(b)

(c)

7. Definition. (Row operation matrices.)

Let p be a positive integer, and M be a (p, p)-square matrix.

The matrix M is called a row-operation matrix of size p if any one of the statements below holds:

(a) $M = I_p + \alpha E_{k,i}^{p,p}$ for some real number α and some distinct integers i, k between 1 and p.

(b) $M = I_p + (\beta - 1)E_{k,k}^{p,p}$ for some non-zero real number β and some integer k between 1 and p.

(c)
$$M = I_p - E_{i,i}^{p,p} - E_{k,k}^{p,p} + E_{i,k}^{p,p} + E_{k,i}^{p,p}$$
 for some distinct integers i, k .

Remark. Now we know that the effect of applying a certain row operation on a matrix, say, A, is the same as multiplying A by some row operation matrix from the left.

In fact such a square matrix is uniquely determined by the row operation concerned; it is independent of A.

Theorem (3) below describes a 'dictionary' between the collection of all row operations on matrices with p rows and the collection of all row-operation matrices of size p. This 'dictionary' tells us the 'application of row operations' and the 'multiplication from the left by row-operation matrices' are two ways of thinking about the same thing. 8. Theorem (3). ('Dictionary' between row operations and matrix multiplication from the left.)

Let p, q be positive integers.

For any row operation ρ on $(p \times q)$ -matrices, there exists some unique $(p \times p)$ -square matrix $M[\rho]$ such that for any $(p \times q)$ -matrix A, the matrix $M[\rho]A$ is the resultant of the application of ρ on A.

Proof. A tedious word game, with reference to the definitions for the notion of row operations and for the notion of row-operation matrices.

Remark. The table below summarizes the correspondence between row operations and row-operation matrices:

Row operation	How C' is obtained from C	'Reverse' row operation	How C is recovered from C'
changing C to C' .	through row-operation matrix.	changing C' to C .	through row-operation matrix.
$C \xrightarrow{\alpha R_i + R_k} C'.$	$C' = (I_p + \alpha E_{k,i}^{p,p})C$	$C' \xrightarrow{-\alpha R_i + R_k} C.$	$C = (I_p - \alpha E_{k,i}^{p,p})C'$
$C \xrightarrow{\beta R_k} C'.$	$C' = [I_p + (\beta - 1)E_{k,k}^{p,p}]C$	$C' \xrightarrow{(1/\beta)R_k} C.$	$C = [I_p + (1/\beta - 1)E_{k,k}^{p,p}]C'$
$C \xrightarrow{R_i \leftrightarrow R_k} C'.$	$C' = (I_p - E_{i,i}^{p,p} - E_{k,k}^{p,p} + E_{i,k}^{p,p} + E_{k,i}^{p,p})C$	$C' \xrightarrow{R_i \leftrightarrow R_k} C.$	$C = (I_p - E_{i,i}^{p,p} - E_{k,k}^{p,p} + E_{i,k}^{p,p} + E_{k,i}^{p,p})C'$

9. Corollary (4).

Let C_1, C_2, \dots, C_N be $(p \times q)$ -matrices. Suppose C_1 is row-equivalent to C_N , and are joint by some sequence of row operations $\rho_1, \rho_2, \dots, \rho_{N-1}$:

$$C_1 \xrightarrow{\rho_1} C_2 \xrightarrow{\rho_2} \cdots \xrightarrow{\rho_{N-2}} C_{N-1} \xrightarrow{\rho_{N-1}} C_N$$

Then there exist row-operation matrices H_1, H_2, \dots, H_{N-1} of size p such that $C_N = H_{N-1}H_{N-2}\cdots H_2H_1C_1$.

Proof. This is an immediate consequence of Theorem (3).

9. Corollary (4).

Let C_1, C_2, \cdots, C_N be $(p \times q)$ -matrices. Suppose C_1 is row-equivalent to C_N , and are joint by some sequence of row operations $\rho_1, \rho_2, \cdots, \rho_{N-1}$: $C_1 \xrightarrow{\rho_1} C_2 \xrightarrow{\rho_2} \cdots \xrightarrow{\rho_{N-2}} C_{N-1} \xrightarrow{\rho_{N-1}} C_N$ Then there exist row-operation matrices H_1, H_2, \dots, H_{N-1} of size p such that $C_N =$ $H_{N-1}H_{N-2}\cdots H_2H_1C_1.$ This is an immediate consequence of Theorem (3). Proof. $C_2 = H_1C_1$ $C_3 = H_2C_2$ $C_3 = H_2C_2$ $C_1 = H_1C_1$ $C_1 = H_1C_2$ $C_2 = H_1C_2$ the row $C_{N} = H_{N-1}C_{N-1} = H_{N-1}(H_{N-2}C_{N-2}) = H_{N-1}H_{N2}C_{N-2}$ = $H_{N-1}H_{N-2}H_{N-3} = H_{2}H_{1}C_{1}$ How to Obtain HAN-1 HAN-2 ... H. H. explicitly? Through an appropriate sequence of Ip. row operations, starting from Ip. Ip Is H, Iz H2H, IS H3H2H, - PN-1 HAN-2 ... H2 H1

10. Examples. (Illustrations on Corollary (4).)

(a) The sequence of row operations below joins C and C'':

$$C = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 2 & 1 & 1 \\ 1 & 0 & 0 & 2 \end{bmatrix} \xrightarrow{1R_1 + R_2} C' = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 0 & 0 & 2 \end{bmatrix} \xrightarrow{2R_2 + R_1} C'' = \begin{bmatrix} 3 & 4 & 5 & 5 \\ 1 & 2 & 2 & 2 \\ 1 & 0 & 0 & 2 \end{bmatrix}.$$

Then $C'' = H_2 H_1 C$, in which $H_1 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $H_2 = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
So $C'' = HC$, in which $H = H_2 H_1 = \begin{bmatrix} 3 & 2 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

(b) The sequence of row operations below joins C and C'':

$$C = \begin{bmatrix} 1 & 2 & 2 & -1 \\ 2 & -2 & 1 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix} \xrightarrow{4R_2} C' = \begin{bmatrix} 1 & 2 & 2 & -1 \\ 8 & -8 & 4 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix} \xrightarrow{-2R_1} C'' = \begin{bmatrix} -2 & -4 & -4 & 2 \\ 8 & -8 & 4 & 0 \\ 1 & 0 & 0 & 2 \end{bmatrix}.$$

Then $C'' = H_2 H_1 C$, in which $H_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $H_2 = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
So $C'' = HC$, in which $H = H_2 H_1 = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

(c) The sequence of row operations below joins C and C'':

$$C = \begin{bmatrix} 1 & 2 & 2 & 0 \\ 3 & 0 & 3 & 1 \\ 2 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} C' = \begin{bmatrix} 3 & 0 & 3 & 1 \\ 1 & 2 & 2 & 0 \\ 2 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_3} C'' = \begin{bmatrix} 3 & 0 & 3 & 1 \\ 2 & 1 & 0 & 1 \\ 1 & 2 & 2 & 0 \end{bmatrix}.$$

Then $C'' = H_2 H_1 C$, in which $H_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $H_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$.
So $C'' = HC$, in which $H = H_2 H_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$.

(d) The sequence of row operations below joins C and C''':

$$C = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 2 & 1 & 1 \\ 1 & 0 & 0 & 2 \end{bmatrix} \xrightarrow{1R_1 + R_2} C' = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 0 & 0 & 2 \end{bmatrix} \xrightarrow{2R_3} C'' = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 2 & 0 & 0 & 4 \end{bmatrix}$$
$$\xrightarrow{R_1 \leftrightarrow R_3} C''' = \begin{bmatrix} 2 & 0 & 0 & 4 \\ 1 & 2 & 2 & 2 \\ 1 & 0 & 1 & 1 \end{bmatrix}.$$
Then $C''' = H_3 H_2 H_1 C$, in which $H_1 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $H_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$, $H_3 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$.
So $C''' = HC$, in which $H = H_3 H_2 H_1 = \begin{bmatrix} 0 & 0 & 2 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$.