
1. Definition. (‘Standard base’ for a ‘vector space of matrices’.)
For each positive integer p, q, and for each i = 1, · · · , p, j = 1, · · · , q, we define the (p×q)-
matrix Ep,q

i,j to be the (p× q)-matrix whose (i, j)-th entry is 1 and whose other entries are
all 0.

There are altogether pq matrices Ep,q
i,j as i, j vary.

They are collectively referred to as the ‘standard base’ for the vector space of (p × q)-
matrices.

2. Examples. (‘Standard base’ for various ‘vector spaces of matrices’.)

(a) E2,3
1,1 =

[
1 0 0

0 0 0

]
, E2,3

1,2 =

[
0 1 0

0 0 0

]
, E2,3

1,3 =

[
0 0 1

0 0 0

]
,

E2,3
2,1 =

[
0 0 0

1 0 0

]
, E2,3

2,2 =

[
0 0 0

0 1 0

]
, E2,3

2,3 =

[
0 0 0

0 0 1

]
.
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(b) E3,3
1,1 =

 1 0 0

0 0 0

0 0 0

, E3,3
1,2 =

 0 1 0

0 0 0

0 0 0

, E3,3
1,3 =

 0 0 1

0 0 0

0 0 0

,

E3,3
2,1 =

 0 0 0

1 0 0

0 0 0

, E3,3
2,2 =

 0 0 0

0 1 0

0 0 0

, E2,3
2,3 =

 0 0 0

0 0 1

0 0 0

,

E3,3
3,1 =

 0 0 0

0 0 0

1 0 0

, E3,3
3,2 =

 0 0 0

0 0 0

0 1 0

, E3,3
3,3 =

 0 0 0

0 0 0

0 0 1

.
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3. Lemma (1).
Let p, q be positive integers. Suppose s, t are integers between 1 and p.
Let A be a (p× q)-matrix, whose (i, j)-th entry is denoted by aij.
Then Ep,p

s,tA is the (p× q)-matrix whose s-th row is[
at1 at2 · · · atq

]
,

and whose every other entry is 0.

Remark. In plain words, multiplying Ep,p
s,t to A from the left results in simultaneously

‘putting’ the t-th row of A into its s-th row and setting to ‘zero’ all other rows of A.

Proof. For convenience, denote the (g, h)-th entry of Ep,p
s,t by εgh

For each k = 1, 2, · · · , q, the (s, k)-th entry of Ep,p
s,tA is the product of the s-th row of Ep,p

s,t

and the k-th column of A, and therefore is given by

εs1a1k + εs2a2k + · · · + εspapk = atk.

Hence the s-th row of Ep,p
s,tA is

[
at1 at2 · · · atq

]
.

Whenever g ̸= s, we have εgh = 0 for each h. Then, no matter which k is, the (g, k)-th
entry of Ep,p

s,tA is a sum of p copies of 0’s, and hence is 0.
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4. Examples. (Illustrations of Lemma (1).)
(a) Suppose A is the (3× 4)-matrix whose (i, j)-th entry is given by aij. Then:

i. E3,3
1,2A =

 0 1 0

0 0 0

0 0 0


 a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

 =

 a21 a22 a23 a24
0 0 0 0

0 0 0 0

.

ii. E3,3
3,1A =

 0 0 0

0 0 0

1 0 0


 a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

 =

 0 0 0 0

0 0 0 0

a11 a12 a13 a14

.

iii. E3,3
3,1A =

 0 0 0

0 0 0

0 0 1


 a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

 =

 0 0 0 0

0 0 0 0

a31 a32 a33 a34


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(b) Suppose A is the (4× 6)-matrix whose (i, j)-th entry is given by aij. Then:

i. E4,4
2,4A =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0



a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46

 =


0 0 0 0 0 0

a41 a42 a43 a44 a45 a46
0 0 0 0 0 0

0 0 0 0 0 0

.

ii. E4,4
3,2A =


0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 0



a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46

 =


0 0 0 0 0 0

0 0 0 0 0 0

a21 a22 a23 a24 a25 a26
0 0 0 0 0 0

.

iii. E4,4
4,1A =


0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0



a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46

 =


0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

a11 a12 a13 a14 a15 a16

.
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5. Lemma (2).
Let A be an (p, q)-matrix. Let i, k be integers between 1 and p.

(a) For any real number α, the resultant of the row operation αRi+Rk on A is (Ip+αEp,p
k,i )A.

(b) For any non-zero real number β, the resultant of the row operation βRk on A is (Ip +
(β − 1)Ep,p

k,k)A.
(c) The resultant of the row operation Ri ↔ Rk on A is (Ip −Ep,p

i,i −Ep,p
k,k +Ep,p

i,k +Ep,p
k,i )A.

Proof. Exercise. (Straightforward calculation with the help of Lemma (1).)

6. Examples. (Illustrations of Lemma (2).)
Suppose A is the (3× 4)-matrix whose (i, j)-th entry is given by aij. Then:
(a)

A
4R2+R1−−−−→

 4a21 + a11 4a22 + a12 4a23 + a13 4a24 + a14

a21 a22 a23 a24

a31 a32 a33 a34


= 4

 a21 a22 a23 a24

0 0 0 0

0 0 0 0

 +

 a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

 = 4E3,3
1,2A + A = (I3 + 4E3,3

1,2)A
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(b)

A
R1↔R3−−−−→

 a31 a32 a33 a34

a21 a22 a23 a24

a11 a12 a13 a14


=

 a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

−

 a11 a12 a13 a14

0 0 0 0

0 0 0 0

−

 0 0 0 0

0 0 0 0

a31 a32 a33 a34


+

 a31 a32 a33 a34

0 0 0 0

0 0 0 0

 +

 0 0 0 0

0 0 0 0

a11 a12 a13 a14


= A− E3,3

1,1A− E3,3
3,3A + E3,3

1,1A + E3,3
3,3A = (I3 − E3,3

1,1 − E3,3
3,3 + E3,3

1,1 + E3,3
3,3)A.

(c)

A
5R2−−→

 a11 a12 a13 a14

5a21 5a22 5a23 5a24

a31 a32 a33 a34


=

 a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

 + 4

 0 0 0 0

a21 a22 a23 a24

0 0 0 0

 = A + 4E3,3
2,2A = (I3 + 4E3,3

2,2)A
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7. Definition. (Row operation matrices.)
Let p be a positive integer, and M be a (p, p)-square matrix.
The matrix M is called a row-operation matrix of size p if any one of the statements below
holds:

(a) M = Ip + αEp,p
k,i for some real number α and some distinct integers i, k between 1 and

p.
(b) M = Ip + (β − 1)Ep,p

k,k for some non-zero real number β and some integer k between 1

and p.
(c) M = Ip − Ep,p

i,i − Ep,p
k,k + Ep,p

i,k + Ep,p
k,i for some distinct integers i, k.

Remark. Now we know that the effect of applying a certain row operation on a matrix,
say, A, is the same as multiplying A by some row operation matrix from the left.
In fact such a square matrix is uniquely determined by the row operation concerned; it is
independent of A.
Theorem (3) below describes a ‘dictionary’ between the collection of all row operations
on matrices with p rows and the collection of all row-operation matrices of size p. This
‘dictionary’ tells us the ‘application of row operations’ and the ‘multiplication from the left
by row-operation matrices’ are two ways of thinking about the same thing.
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8. Theorem (3). (‘Dictionary’ between row operations and matrix multipli-
cation from the left.)
Let p, q be positive integers.
For any row operation ρ on (p × q)-matrices, there exists some unique (p × p)-square
matrix M [ρ] such that for any (p× q)-matrix A, the matrix M [ρ]A is the resultant of the
application of ρ on A.

Proof. A tedious word game, with reference to the definitions for the notion of row
operations and for the notion of row-operation matrices.

Remark. The table below summarizes the correspondence between row operations and
row-operation matrices:

Row operation
changing C to C ′.

How C ′ is obtained from C

through row-operation matrix.
‘Reverse’ row operation
changing C ′ to C.

How C is recovered from C ′

through row-operation matrix.
C

αRi+Rk−−−−→ C ′. C ′ = (Ip + αEp,p
k,i )C C ′ −αRi+Rk−−−−−→ C. C = (Ip − αEp,p

k,i )C
′

C
βRk−−→ C ′. C ′ = [Ip + (β − 1)Ep,p

k,k]C C ′ (1/β)Rk−−−−→ C. C = [Ip + (1/β − 1)Ep,p
k,k]C

′

C
Ri↔Rk−−−−→ C ′. C ′ = (Ip − Ep,p

i,i − Ep,p
k,k + Ep,p

i,k + Ep,p
k,i )C C ′ Ri↔Rk−−−−→ C. C = (Ip − Ep,p

i,i − Ep,p
k,k + Ep,p

i,k + Ep,p
k,i )C

′
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9. Corollary (4).
Let C1, C2, · · · , CN be (p× q)-matrices.
Suppose C1 is row-equivalent to CN , and are joint by some sequence of row operations
ρ1, ρ2, · · · , ρN−1:

C1−→
ρ1

C2−→
ρ2

· · · −→
ρN−2

CN−1−→
ρN−1

CN

Then there exist row-operation matrices H1, H2, · · · , HN−1 of size p such that CN =

HN−1HN−2 · · ·H2H1C1.

Proof. This is an immediate consequence of Theorem (3).
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10. Examples. (Illustrations on Corollary (4).)

(a) The sequence of row operations below joins C and C ′′:

C =

 1 0 1 1

0 2 1 1

1 0 0 2

 1R1+R2−−−−→ C ′ =

 1 0 1 1

1 2 2 2

1 0 0 2

 2R2+R1−−−−→ C ′′ =

 3 4 5 5

1 2 2 2

1 0 0 2

.

Then C ′′ = H2H1C, in which H1 =

 1 0 0

1 1 0

0 0 1

, H2 =

 1 2 0

0 1 0

0 0 1

.

So C ′′ = HC, in which H = H2H1 =

 3 2 0

1 1 0

0 0 1

.
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(b) The sequence of row operations below joins C and C ′′:

C =

 1 2 2 −1

2 −2 1 0

1 0 0 2

 4R2−−→ C ′ =

 1 2 2 −1

8 −8 4 0

1 0 0 2

 −2R1−−−→ C ′′ =

 −2 −4 −4 2

8 −8 4 0

1 0 0 2

.

Then C ′′ = H2H1C, in which H1 =

 1 0 0

0 4 0

0 0 1

, H2 =

 −2 0 0

0 1 0

0 0 1

.

So C ′′ = HC, in which H = H2H1 =

 −2 0 0

0 4 0

0 0 1

.
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(c) The sequence of row operations below joins C and C ′′:

C =

 1 2 2 0

3 0 3 1

2 1 0 1

 R1↔R2−−−−→ C ′ =

 3 0 3 1

1 2 2 0

2 1 0 1

 R2↔R3−−−−→ C ′′ =

 3 0 3 1

2 1 0 1

1 2 2 0

.

Then C ′′ = H2H1C, in which H1 =

 0 1 0

1 0 0

0 0 1

, H2 =

 1 0 0

0 0 1

0 1 0

.

So C ′′ = HC, in which H = H2H1 =

 0 1 0

0 0 1

1 0 0

.
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(d) The sequence of row operations below joins C and C ′′′:

C =

 1 0 1 1

0 2 1 1

1 0 0 2

 1R1+R2−−−−→ C ′ =

 1 0 1 1

1 2 2 2

1 0 0 2

 2R3−−→ C ′′ =

 1 0 1 1

1 2 2 2

2 0 0 4


R1↔R3−−−−→ C ′′′ =

 2 0 0 4

1 2 2 2

1 0 1 1

.

Then C ′′′ = H3H2H1C, in which H1 =

 1 0 0

1 1 0

0 0 1

, H2 =

 1 0 0

0 1 0

0 0 2

, H3 =

 0 0 1

0 1 0

1 0 0

.

So C ′′′ = HC, in which H = H3H2H1 =

 0 0 2

1 1 0

1 0 0

.
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