MATH1030 Addition and scalar multiplication for matrices and vectors

1. Recall the definitions on the notion of matrices:

A (p x q)-rectangular array

i1 Ci2 -+ Ciq
C21 C22 -+ C2q
Cp1 Cp2 "+ Cpgq

in which the ¢;;’s are real numbers is called a (p x q)-matrix with real entries, with p rows and q columns.
Suppose We denote this matrix by C.

For each fixedi=1,2,--- ,pand j =1,2,--- ,q, we refer to the number c;; as the (i, j)-th entry of C.
For each fixed k =1,2,--- ,p, we refer to the array

[ k1 k2 -+ Crq |,

as the k-th row of C.
For each fixed ¢ =1,2,--- ,q, we refer to the array

C1e
Coy
Cat
as the ¢-th column of C.
2. Definition. (Equality for matrices.)
Let B,C be (p x q)-matrices with real entries.
For each i, j, denote the (i, j)-th entry of B by b;;, and the (i, j)-th entry of C' by c¢;;.

B is said to be equal to C' as matrices if and only if b;; = c;; for each 1, j.

3. Definition. (Addition for matrices.)
Let B,C be (p x q)-matrices with real entries.
For each 1, j, denote the (i, j)-th entry of B by b;;, and the (i, j)-th entry of C' by c¢;;.

The sum of B, C' is defined to be the (p X ¢)-matrix whose (i, j)-th entry is b;; + ¢;; for each i,j. It is denoted by
B+C.

Remark. In symbols, this definition says:

bir bz - by i1 Ci2 - Cig biy +ci1 biza+ciz -0 bigteig
b1 baa -+ Dby Co1 C22 +++  C2q bor +c21 baa+ca2 - bagH o
bpr bp2 -+ bpg Cpr Cp2 " Cpg bpr +¢p1 bpz+cp2 -0 bpgtCpg

4. Definition. (Scalar multiplication for matrices.)
Let C be (p x q)-matrices with real entries.
For each i, j, denote the (i, j)-th entry of C by c¢;;.

Let o be a real number.

The scalar multiple of C' by « is defined to be the (p x q)-matrix whose (i, j)-th entry is ac;; for each i,j. It is
denoted by aC.

Remark. In symbols, this definition says:

i1 €2 - Ciq aci; Q2 - QaCiq

Co1 C22 -~ Caq QcC21  Ql22 - QAC2q
o =

Cp1 Cp2 - Cpq QCp1  QCp  * -+ QCpq

5. Examples.



1 2 3 3 6 9
(b)3[4 5 6]2[12 15 18]
6. Definition. (Subtraction for matrices.)
Let B,C be (p x q)-matrices with real entries.

The difference of B from C' is defined to be the (p X ¢)-matrix B+ (—1)C. It is denoted by B — C.
Remark. In symbols, this definition says that if

b1 b - blq €11 Ci2 -+ Ciq
bar b2z - by €1 €22 -t C2q
B = . . . ,C = ) ) )
bpr bp2 - bpg Cp1 Cp2 "' Cpq
then
bip —ci1 biz—ci2 - blq — Ciq
bar —co1 bag —caz -+ bag— g
B-C= ) . )
bpr —Cp1 bp2 —cCp2 o+ bpg = Cpg

7. Definition. (Zero matrix.)

The (p x q)-matrix whose entries are all 0 is called the zero matrix. It is denoted by Opx,.

8. Definition. (Additive inverse of a matrix.)
Let C be a (p x q)-matrix with real entries.
The (p x q)-matrix (—1)C' is called the additive inverse of C. It is denoted by —C.
Remark. In symbols, this definition says that if

€11 Ci2z - Ciq
Ca1 C22 - Coq
Cp1 Cp2 "t Cpg
then
—C€1i1 —C2 -+ —Cig
—C21 —C2 -+ —C2q
—C =
_cpl _Cp2 .. _cpq

9. Definition. (Column vectors and row vectors.)
An (p x 1)-matrix is called a column vector of size p.
A (1 x g)-matrix is called a row vector of size q.

Remark. In this course, when we use the word wvector, we mean column vector unless otherwise stated.

10. Geometric visualization of vectors, and operations with vectors.

The key is the identification of vectors with their ‘arrowheads’.

C1
C2

We visualize the column vector | . | as an arrow with ‘arrowhead’ at the point (¢1,co,- - ,¢,) in real coordinate
Cn

n-space and with tail at its origin.

We may then further identify this vector as the point (¢, ca, -, ¢p).

o The column vector [c1] is identified as the point ¢; on the real line.

C1

e The column vector {02

} is identified as the point (c1, c) on the real coordinate plane.

C1
e The column vector |f32] is identified as the point (c1, ¢o,c3) on the real coordinate space. Et cetera.
C3

Remarks.

(a) How to give a geometric interpretation of scalar multiplications for vectors?



(b) How to give a geometric interpretation of vector addition?
11. Theorem (1). (Basic properties of matrix addition.)
The statements below hold:
(a) Suppose A, B,C are (p x q)-matrices with real entries. Then (A+ B)+C = A+ (B+ ().
(b
(c

(d) Suppose B,C are (p x q)-matrices with real entries. Then B+ C = C + B.

) Suppose A is a (p x q)-matrix with real entries. Then Opyq+ A=A =A+ Opxq.
) Suppose A is a (p x q)-matrix with real entries. Then A+ (—A) =0 = (—A) + A.
)

Remark on terminologies.

Statement (a) is known as the ‘Law of Associativity’ for matrix addition.

Statement (b) is how the ‘Law of Existence of Additive Identity’ for matrix addition is manifested. The zero
matrix is the ‘additive identity’ concerned.

Statement (c¢) is how the ‘Law of Existence of Additive inverse’ for matrix addition is manifested. For each
matrix A, the matrix —A is its ‘additive inverse’.

(d)
12. Theorem (2). (Basic properties of matrix addition together with scalar multiplication.)

The statements below hold:

Statement (d) is known as the ‘Law of Commutativity’ for matrix addition.

(a) Suppose C'is a (p x q)-matrix with real entries. Suppose «, 8 are real numbers. Then a(8C) = (af8)C.
(b) Suppose C'is a (p x q)-matrix with real entries. Suppose «, 3 are real numbers. Then (a+ §)C = (aC)+ (B8C).
aB)+(aC).

(¢) Suppose B, C' are (p %X q)-matrices with real entries. Suppose « is a real number. Then a(B+C') = (
(d) Suppose C' is a (p X q)-matrix with real entries. Then 1C = C.

13. Addition and scalar multiplication for ‘block matrices’, introduced through examples.

(a) Let Aq,---,Ap, B1,---, By be matrices each with m rows. Suppose that for each k, the matrices Ay, By have
the same number of columns.
Define A= A1 | A2 |-+ |Ap ,and B=[ By | B2 | -+ | Bp |.
ThenA—l—B:[ A+ B ‘ As + By ‘ ‘ Ap+Bp ]
Moreover, for each a € R, aA = adi | ada | -+ | a4, ].
Illustration.
a1l a2 ai3 | Gi4 | ais aie b1 biz b1z | b1y | bis bis
Let A= | @21 @22 Q23| Q24 | G25 Q26 B = bor baz bos | boa | bas  bos
a31 as2 G33 | 34 | a3zs  G36 |’ b31 b3 b33 | b3y | bas  Db3s
(g1 Q42 Q43 | Q44 | A45 A46 bs1 bao  bas | byg | bas  bag
[ a11 a2 ais a4 a5 a1g
_ | a1 a2 a3 _ | a24 _ | a5 ags
Let A, = as; azz2 ass |’ Az = asq |’ As = ass  ase
L @41 Q42 Q43 Q44 a45 Q46
r 211 212 213 214 215 216
_ 21 b2 D23 _ 24 _ 25 026
Let By = b1 b3z b3z |’ By = bss |’ Bs = bss  b3s
L ba1 bax by3 baa bss  bas
Then we have A= A1 | A2 | A3 |, B=[ By | Bo | Bs ], and
a1 + 211 a2 + 212 a3 + 213 a4 + 214 ais + 215 aie + 216
_ | a21+021 aga+ 022 ag3+ 023 _ | a24+ 024 _ | az5+ 025 age+ 02
AEBL =1 0l S bar amo+ by azs+bas |0 2TB2T | agy by AT T Gl b agg + by
ag1 +ba1 aaz +baa  Ga3 + bas Q44 + bas a5 + bas  ase + bag
SOA+B:[A1+31\A2+BQ\A3+Bg]indeed.
(b) Let Aq,---, Ay, By, -+, B, be matrices each with n columns. Suppose that for each k, the matrices Ay, By,
have the same number of rows.
Ay B,
Ay By
Define A = ,and B =
jp B.p
A+ B
Ay + By
Then A+ B = . .
A, + B,




OéAl
aly

Moreover, for each o € R, cA = .
oA,
(c¢) Let Ay1, A1a, As1, Aoa, B11, B2, Ba1, B be matrices. Suppose that
e the number of rows of A1y, A12, B11, B12 are the same,
o the number of rows of Asy, Asg, Bay, Boo are the same,

e the number of columns of Ay, As1, B11, Bo1 are the same, and
e the number of column of A5, A, Bia, Bao are the same.

Dot A = [ A ] 5 [Bn | B ]
21 | A2 21 | B2
_ [ A+ DB | Aix+ Bio
Then A+ B = [ Az + Bay | Ao + B ]

Moreover, for each o € R, oA = {%L‘%i}.
dA21 | A2

14. Appendix 1. Proof of Theorem (1) and Theorem (2).

15.

Here we give the proof for one of the statements in Theorem (1) and Theorem (2).
The proofs for all other statements are similar.
Statement (c) of Theorem (2).
Suppose B, C are (p X q)-matrices with real entries. Suppose « is a real number. Then a(B + C) = (aB) + (aC).
Proof of Statement (c) of Theorem (2).
Suppose B, C are (p X g)-matrices with real entries.
For each 1, j, denote the (¢, j)-th entry of B by b;;, and the (4, j)-th entry of B by c¢;;.
Suppose « is a real number.
Fix any ¢, 5.
o The (4,7)-th entry of B+ C'is b;; + ¢;;.
Then the (4, j)-th entry of a(B + C) is a(b;; + ¢;j).
o The (4,7)-th entry of aB is ab;;.
The (4, j)-th entry of aC is ac;;.
Then the (i, j)-th entry of (aB) + (aC) is ab;; + ac;;.
o Note that a(b;; + ¢;j) = ab;j + ac;; by the distributive laws for the reals.
Then the (i, j)-th entry of a(B 4 C) and that of (aB) + (aC) are the same.

It follows that a(B + C) = (aB) + (aC).

Appendix 2. ‘Algebraic laws of arithmetic’ for the reals. The ‘algebraic laws of arithmetic’ for addition and
scalar multiplication, and those for matrix multiplication (to be introduced very soon) all rely on ‘algebraic laws of
arithmetic’ (or the ‘field laws’) for the real number system:

(Al) For any a,be R, a+beR.

(A2) For any a,b,c € R, (a+b)+c=a+ (b+c).

(A3) There exists some z € R, namely z = 0, such that for any a € R, a+ 2z =a and z + a = a.

(A4) For any a € R, there exists some b € R, called an additive inverse of «a, such that a+b=0 and b+ a = 0.
(A5) For any a,beR,a+b=>b+a.

(A6) For any a,be R, axbeR.

(AT) For any a,b,c € R, (a xb) x c=a x (bx c).

(A8) There exists some u € R, namely u = 1, such that for any a € R, a X u = a and u X a = a.

(A9) For any a € R\{0}, there exists some b € R, called a multiplicative inverse of a, such that a x b =1 and

bxa=1.

(A10) For any a,b € R, a xb=">b X a.
(A11) For any a,b,c € R, (a+b) xc=(axc)+ (bxc)andax (b+c¢)=(axb)+ (axc).

These ‘laws’ are also what make everything we have learnt about solving systems of linear equations work.



