
MATH1030 Addition and scalar multiplication for matrices and vectors

1. Recall the definitions on the notion of matrices:

A (p× q)-rectangular array 
c11 c12 · · · c1q
c21 c22 · · · c2q
...

...
...

cp1 cp2 · · · cpq


in which the cij ’s are real numbers is called a (p× q)-matrix with real entries, with p rows and q columns.
Suppose We denote this matrix by C.
For each fixed i = 1, 2, · · · , p and j = 1, 2, · · · , q, we refer to the number cij as the (i, j)-th entry of C.
For each fixed k = 1, 2, · · · , p, we refer to the array

[ ck1 ck2 · · · ckq ] ,

as the k-th row of C.
For each fixed ℓ = 1, 2, · · · , q, we refer to the array 

c1ℓ
c2ℓ
...
cqℓ

 ,

as the ℓ-th column of C.

2. Definition. (Equality for matrices.)
Let B,C be (p× q)-matrices with real entries.
For each i, j, denote the (i, j)-th entry of B by bij , and the (i, j)-th entry of C by cij .
B is said to be equal to C as matrices if and only if bij = cij for each i, j.

3. Definition. (Addition for matrices.)
Let B,C be (p× q)-matrices with real entries.
For each i, j, denote the (i, j)-th entry of B by bij , and the (i, j)-th entry of C by cij .
The sum of B,C is defined to be the (p × q)-matrix whose (i, j)-th entry is bij + cij for each i, j. It is denoted by
B + C.
Remark. In symbols, this definition says:

b11 b12 · · · b1q
b21 b22 · · · b2q
...

...
...

bp1 bp2 · · · bpq

+


c11 c12 · · · c1q
c21 c22 · · · c2q
...

...
...

cp1 cp2 · · · cpq

 =


b11 + c11 b12 + c12 · · · b1q + c1q
b21 + c21 b22 + c22 · · · b2q + c2q

...
...

...
bp1 + cp1 bp2 + cp2 · · · bpq + cpq


4. Definition. (Scalar multiplication for matrices.)

Let C be (p× q)-matrices with real entries.
For each i, j, denote the (i, j)-th entry of C by cij .
Let α be a real number.
The scalar multiple of C by α is defined to be the (p × q)-matrix whose (i, j)-th entry is αcij for each i, j. It is
denoted by αC.
Remark. In symbols, this definition says:

α


c11 c12 · · · c1q
c21 c22 · · · c2q
...

...
...

cp1 cp2 · · · cpq

 =


αc11 αc12 · · · αc1q
αc21 αc22 · · · αc2q

...
...

...
αcp1 αcp2 · · · αcpq


5. Examples.

(a)
[
1 2 3
4 5 6

]
+
[
7 5 3
5 3 1

]
=

[
8 7 6
9 8 7

]
.
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(b) 3
[
1 2 3
4 5 6

]
=

[
3 6 9
12 15 18

]
.

6. Definition. (Subtraction for matrices.)
Let B,C be (p× q)-matrices with real entries.
The difference of B from C is defined to be the (p× q)-matrix B + (−1)C. It is denoted by B − C.
Remark. In symbols, this definition says that if

B =


b11 b12 · · · b1q
b21 b22 · · · b2q
...

...
...

bp1 bp2 · · · bpq

 , C =


c11 c12 · · · c1q
c21 c22 · · · c2q
...

...
...

cp1 cp2 · · · cpq


then

B − C =


b11 − c11 b12 − c12 · · · b1q − c1q
b21 − c21 b22 − c22 · · · b2q − c2q

...
...

...
bp1 − cp1 bp2 − cp2 · · · bpq − cpq

 .

7. Definition. (Zero matrix.)
The (p× q)-matrix whose entries are all 0 is called the zero matrix. It is denoted by Op×q.

8. Definition. (Additive inverse of a matrix.)
Let C be a (p× q)-matrix with real entries.
The (p× q)-matrix (−1)C is called the additive inverse of C. It is denoted by −C.
Remark. In symbols, this definition says that if

C =


c11 c12 · · · c1q
c21 c22 · · · c2q
...

...
...

cp1 cp2 · · · cpq


then

−C =


−c11 −c12 · · · −c1q
−c21 −c22 · · · −c2q

...
...

...
−cp1 −cp2 · · · −cpq

 .

9. Definition. (Column vectors and row vectors.)
An (p× 1)-matrix is called a column vector of size p.
A (1× q)-matrix is called a row vector of size q.
Remark. In this course, when we use the word vector, we mean column vector unless otherwise stated.

10. Geometric visualization of vectors, and operations with vectors.
The key is the identification of vectors with their ‘arrowheads’.

We visualize the column vector


c1
c2
...
cn

 as an arrow with ‘arrowhead’ at the point (c1, c2, · · · , cn) in real coordinate

n-space and with tail at its origin.
We may then further identify this vector as the point (c1, c2, · · · , cn).

• The column vector [c1] is identified as the point c1 on the real line.

• The column vector
[
c1
c2

]
is identified as the point (c1, c2) on the real coordinate plane.

• The column vector
[
c1
c2
c3

]
is identified as the point (c1, c2, c3) on the real coordinate space. Et cetera.

Remarks.

(a) How to give a geometric interpretation of scalar multiplications for vectors?
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(b) How to give a geometric interpretation of vector addition?

11. Theorem (1). (Basic properties of matrix addition.)
The statements below hold:

(a) Suppose A,B,C are (p× q)-matrices with real entries. Then (A+B) + C = A+ (B + C).
(b) Suppose A is a (p× q)-matrix with real entries. Then Op×q +A = A = A+Op×q.
(c) Suppose A is a (p× q)-matrix with real entries. Then A+ (−A) = O = (−A) +A.
(d) Suppose B,C are (p× q)-matrices with real entries. Then B + C = C +B.

Remark on terminologies.

(a) Statement (a) is known as the ‘Law of Associativity’ for matrix addition.
(b) Statement (b) is how the ‘Law of Existence of Additive Identity’ for matrix addition is manifested. The zero

matrix is the ‘additive identity’ concerned.
(c) Statement (c) is how the ‘Law of Existence of Additive inverse’ for matrix addition is manifested. For each

matrix A, the matrix −A is its ‘additive inverse’.
(d) Statement (d) is known as the ‘Law of Commutativity’ for matrix addition.

12. Theorem (2). (Basic properties of matrix addition together with scalar multiplication.)
The statements below hold:

(a) Suppose C is a (p× q)-matrix with real entries. Suppose α, β are real numbers. Then α(βC) = (αβ)C.
(b) Suppose C is a (p×q)-matrix with real entries. Suppose α, β are real numbers. Then (α+β)C = (αC)+(βC).
(c) Suppose B,C are (p×q)-matrices with real entries. Suppose α is a real number. Then α(B+C) = (αB)+(αC).
(d) Suppose C is a (p× q)-matrix with real entries. Then 1C = C.

13. Addition and scalar multiplication for ‘block matrices’, introduced through examples.

(a) Let A1, · · · , Ap, B1, · · · , Bp be matrices each with m rows. Suppose that for each k, the matrices Ak, Bk have
the same number of columns.
Define A = [ A1 A2 · · · Ap ], and B = [ B1 B2 · · · Bp ].
Then A+B = [ A1 +B1 A2 +B2 · · · Ap +Bp ].
Moreover, for each α ∈ R, αA = [ αA1 αA2 · · · αAp ].
Illustration.

Let A =

 a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46

, B =

 b11 b12 b13 b14 b15 b16
b21 b22 b23 b24 b25 b26
b31 b32 b33 b34 b35 b36
b41 b42 b43 b44 b45 b46

.

Let A1 =

 a11 a12 a13
a21 a22 a23
a31 a32 a33
a41 a42 a43

, A2 =

 a14
a24
a34
a44

, A3 =

 a15 a16
a25 a26
a35 a36
a45 a46

.

Let B1 =

 b11 b12 b13
b21 b22 b23
b31 b32 b33
b41 b42 b43

, B2 =

 b14
b24
b34
b44

, B3 =

 b15 b16
b25 b26
b35 b36
b45 b46

.

Then we have A = [ A1 A2 A3 ], B = [ B1 B2 B3 ], and

A1+B1 =

 a11 + b11 a12 + b12 a13 + b13
a21 + b21 a22 + b22 a23 + b23
a31 + b31 a32 + b32 a33 + b33
a41 + b41 a42 + b42 a43 + b43

, A2+B2 =

 a14 + b14
a24 + b24
a34 + b34
a44 + b44

, A3+B3 =

 a15 + b15 a16 + b16
a25 + b25 a26 + b26
a35 + b35 a36 + b36
a45 + b45 a46 + b46

.

So A+B = [ A1 +B1 A2 +B2 A3 +B3 ] indeed.
(b) Let A1, · · · , Ap, B1, · · · , Bp be matrices each with n columns. Suppose that for each k, the matrices Ak, Bk

have the same number of rows.

Define A =


A1
A2
...
Ap

, and B =


B1
B2
...
Bp

.

Then A+B =


A1 +B1
A2 +B1

...
Ap +Bp

.
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Moreover, for each α ∈ R, αA =


αA1
αA2

...
αAp

.

(c) Let A11, A12, A21, A22, B11, B12, B21, B22 be matrices. Suppose that
• the number of rows of A11, A12, B11, B12 are the same,
• the number of rows of A21, A22, B21, B22 are the same,
• the number of columns of A11, A21, B11, B21 are the same, and
• the number of column of A12, A22, B12, B22 are the same.

Define A =
[
A11 A12
A21 A22

]
, B =

[
B11 B12
B21 B22

]
.

Then A+B =
[
A11 +B11 A12 +B12
A21 +B21 A22 +B22

]
.

Moreover, for each α ∈ R, αA =
[
αA11 αA12
αA21 αA22

]
.

14. Appendix 1. Proof of Theorem (1) and Theorem (2).
Here we give the proof for one of the statements in Theorem (1) and Theorem (2).
The proofs for all other statements are similar.
Statement (c) of Theorem (2).
Suppose B,C are (p× q)-matrices with real entries. Suppose α is a real number. Then α(B + C) = (αB) + (αC).
Proof of Statement (c) of Theorem (2).
Suppose B,C are (p× q)-matrices with real entries.
For each i, j, denote the (i, j)-th entry of B by bij , and the (i, j)-th entry of B by cij .
Suppose α is a real number.
Fix any i, j.

• The (i, j)-th entry of B + C is bij + cij .
Then the (i, j)-th entry of α(B + C) is α(bij + cij).

• The (i, j)-th entry of αB is αbij .
The (i, j)-th entry of αC is αcij .
Then the (i, j)-th entry of (αB) + (αC) is αbij + αcij .

• Note that α(bij + cij) = αbij + αcij by the distributive laws for the reals.
Then the (i, j)-th entry of α(B + C) and that of (αB) + (αC) are the same.

It follows that α(B + C) = (αB) + (αC).

15. Appendix 2. ‘Algebraic laws of arithmetic’ for the reals. The ‘algebraic laws of arithmetic’ for addition and
scalar multiplication, and those for matrix multiplication (to be introduced very soon) all rely on ‘algebraic laws of
arithmetic’ (or the ‘field laws’) for the real number system:

(A1) For any a, b ∈ R, a+ b ∈ R.
(A2) For any a, b, c ∈ R, (a+ b) + c = a+ (b+ c).
(A3) There exists some z ∈ R, namely z = 0, such that for any a ∈ R, a+ z = a and z + a = a.
(A4) For any a ∈ R, there exists some b ∈ R, called an additive inverse of a, such that a+ b = 0 and b+ a = 0.
(A5) For any a, b ∈ R, a+ b = b+ a.
(A6) For any a, b ∈ R, a× b ∈ R.
(A7) For any a, b, c ∈ R, (a× b)× c = a× (b× c).
(A8) There exists some u ∈ R, namely u = 1, such that for any a ∈ R, a× u = a and u× a = a.
(A9) For any a ∈ R\{0}, there exists some b ∈ R, called a multiplicative inverse of a, such that a × b = 1 and

b× a = 1.
(A10) For any a, b ∈ R, a× b = b× a.
(A11) For any a, b, c ∈ R, (a+ b)× c = (a× c) + (b× c) and a× (b+ c) = (a× b) + (a× c).

These ‘laws’ are also what make everything we have learnt about solving systems of linear equations work.
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