
MATH1030 Row-echelon forms and reduced row-echelon forms

1. Definition. (Row-echelon form.)
Let C be a (p× q)-matrix.
C is said to be a row-echelon form if the statements below hold:

(a) All rows consisting of only zeros are at the bottom of C.
(b) In every non-zero row, the first non-zero entry from the left is 1. (Such entries are called the leading ones of

C.)
(c) The leading one in each row is always strictly to the right of that in the row above it.

The number of leading ones in C is called the rank of the row-echelon form C.
Remark. As a whole, the zeros in a row-echelon form to the left of the leading ones of the respective rows form
something like a ‘staircase’ of zeros, and the leading ones a like step-edges of this ‘staircase’. It reads like:

0 · · · 0 1 ⋆ · · · ⋆ ⋆ ⋆ · · · ⋆ ⋆ ⋆ · · · ⋆ ⋆ ⋆
0 · · · 0 0 0 · · · 0 1 ⋆ · · · ⋆ ⋆ ⋆ · · · ⋆ ⋆ ⋆
0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 ⋆ · · · ⋆ ⋆ ⋆
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 ⋆

0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0
. . .

0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0


The symbol 0 stands for a column of zeros.

2. Examples of row-echelon forms.
These are row-echelon forms:

(a)

 1 3 5 7 9 0
0 0 1 2 0 1
0 0 0 1 4 2
0 0 0 0 0 1

 (b)

 1 3 5 7 9 0
0 0 1 2 0 1
0 0 0 1 4 2
0 0 0 0 0 0

 (c)

 0 1 3 5 7 9
0 0 0 1 2 0
0 0 0 0 1 2
0 0 0 0 0 0


Non-examples.
These are not row-echelon forms:

(a)

 1 3 5 7 9 0
0 0 0 0 0 0
0 0 0 1 4 2
0 0 0 0 0 1

 (b)

 1 3 5 7 9 0
0 0 4 2 0 1
0 0 0 1 4 2
0 0 0 0 0 0

 (c)

 0 1 3 5 7 9
1 0 0 1 2 0
0 0 0 0 1 2
0 0 0 0 0 0


3. Definition. (Reduced row-echelon form.)

Let C be a (p× q)-matrix.
C is said to be a reduced row-echelon form if C is a row-echelon form and furthermore:

• In any column which contains a leading one, the only non-zero entry is the entry provided by that leading one.

Such columns are called the pivot columns of C.
The other columns of C are called the free columns of C.
Remark. A reduced row-echelon form reads like:

0 · · · 0 1 ⋆ · · · ⋆ 0 ⋆ · · · ⋆ 0 ⋆ · · · ⋆ 0 ⋆
0 · · · 0 0 0 · · · 0 1 ⋆ · · · ⋆ 0 ⋆ · · · ⋆ 0 ⋆
0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 ⋆ · · · ⋆ 0 ⋆
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 ⋆

0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0
. . .

0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0


Further convention and terminology. In such a reduced row-echelon form, say, C, the pivot columns whose
leading ones are in the 1st, 2nd, 3rd, ... rows are respectively labelled as the d1-th, d2-th, d3-th, ... columns. The
free columns of C are labelled, from left to right, as the f1-th, f2-th, f3-th, ... columns.

4. Examples of reduced row-echelon forms.
These are reduced row-echelon forms:
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(a)

 1 3 0 0 9 0
0 0 1 0 0 0
0 0 0 1 4 0
0 0 0 0 0 1

 (b)

 1 3 0 0 9 0
0 0 1 0 0 1
0 0 0 1 4 2
0 0 0 0 0 0

 (c)

 0 1 3 0 0 9
0 0 0 1 0 0
0 0 0 0 1 2
0 0 0 0 0 0


Non-examples.
These are not reduced row-echelon forms, despite being row-echelon forms:

(a)

 1 3 0 0 9 0
0 0 1 0 0 1
0 0 0 1 4 2
0 0 0 0 0 1

 (b)

 1 3 0 0 9 0
0 0 1 2 0 1
0 0 0 1 4 2
0 0 0 0 0 0

 (c)

 0 1 3 0 0 9
0 0 0 1 2 0
0 0 0 0 1 2
0 0 0 0 0 0


Remark. Every reduced row-echelon form is a row-echelon form in the first place. If a matrix is not a row-echelon
form, then it is definitely not a reduced row-echelon form.

5. How to check whether a given matrix is a row-echelon form, or a reduced row-echelon form?
Suppose C is a matrix.

(a) Inspect C and ask:

• Is it of the form
[

O C̃
O O

]
for some matrix C̃ whose (1, 1)-th entry is 1 and whose last row is non-zero?

(Here the O’s stand for various rectangular arrays of 0’s.)
(b) If no, C is not a row-echelon form.

If yes, inspect C̃ row by row, and ask:
• Is the leading one in each row always strictly to the right of that in the row above it?

(c) If no, C is not a row-echelon form.
If yes, C is a row echelon form (and C̃ is a row-echelon form). Now inspect the columns of C̃ which contain
leading ones, and ask:

• Are they pivot columns of C̃?

(d) If no, C is not a reduced row-echelon form (and C̃ is a not a reduced row-echelon form).
If yes, C is a reduced row-echelon form (and C̃ is a reduced row-echelon form).

6. Theorem (1). (Existence and uniqueness of reduced row-echelon form which is row-equivalent to a
given matrix.)
Suppose that A is a matrix (with real entries). Then the statements below hold:

(a) There exists some row-echelon form B such that A is row-equivalent to B.
(b) There exists some unique reduced row-echelon form C such that A is row-equivalent to C.

Proof. Omitted.
Remarks.

(1) The ‘existence arguments’ for both statements here can be given with the help of mathematical induction. They
can be adapted to provide an ‘algorithm’, known as Gaussian elimination for matrices, which helps us obtain
through the application of a sequence of row operations, from any given matrix, say, A, some row-echelon forms
B, and furthermore a (unique) reduced row-echelon form C which are row-equivalent to the matrix A.

(2) The ‘uniqueness argument’ for reduced row-echelon form can also be given with the help of mathematical
induction. This can be done efficiently with the help of the ‘dictionary’ between row operations and matrix
multiplication by row-operation matrices, to be introduced later.

(3) Row-equivalence partitions the ‘world’ of all (p× q)-matrices into ‘chambers’ of various (p× q)-matrices.
Matrices within the same ‘chambers’ are row-equivalent to each other.
Two matrices of different chambers are not row-equivalent to each other.
The second part of Theorem (1) tells us that each such ‘chamber’ contains exactly one reduced row-echelon
form which is row-equivalent to every other matrix in that ‘chamber’.

7. Gaussian elimination for matrices, introduced through an example.
Consider the matrix

C =

 0 0 2 3 5 −7 12
−1 2 1 −1 0 −2 0
2 −4 −1 3 2 1 5
3 −6 −1 5 4 0 10

 .
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We are going to obtain, through a methodical application of row operations starting from C, first a row-echelon
form and then a reduced row-echelon form which are row-equivalent to C.
(For a description of Gaussian elimination for matrices in the general situation, refer to the appendix.)

(a) We start by labelling C as C1.
Unless C1 is a row-echelon form, we apply appropriate row operations to obtain a matrix in which

• the left-most non-zero entry in the first row is 1.

C1 =

 0 0 2 3 5 −7 12
−1 2 1 −1 0 −2 0
2 −4 −1 3 2 1 5
3 −6 −1 5 4 0 10

 R1↔R2−−−−−→ C2 =

 −1 2 1 −1 0 −2 0
0 0 2 3 5 −7 12
2 −4 −1 3 2 1 5
3 −6 −1 5 4 0 10


−1R5−−−→ C3 =

 1 −2 −1 1 0 2 0
0 0 2 3 5 −7 12
2 −4 −1 3 2 1 5
3 −6 −1 5 4 0 10



(b) Consider the matrix C3.
Unless C3 is a row-echelon form, we apply appropriate row operations to obtain a matrix in which

• all non-zero entries below the first row are strictly to the right of the left-most entry in the first row.

C3 =

 1 −2 −1 1 0 2 0
0 0 2 3 5 −7 12
2 −4 −1 3 2 1 5
3 −6 −1 5 4 0 10

 −2R1+R3−−−−−−→ C4 =

 1 −2 −1 1 0 2 0
0 0 2 3 5 −7 12
0 0 1 1 2 −3 5
3 −6 −1 5 4 0 10


−3R1+R4−−−−−−→ C5 =

 1 −2 −1 1 0 2 0
0 0 2 3 5 −7 12
0 0 1 1 2 −3 5
0 0 2 2 4 −6 10



(c) Consider the matrix C5. Leave the first row alone for now.
Unless C5 is a row-echelon form, we apply appropriate row operations to obtain a matrix in which

• the left-most non-zero entry in the second row is 1, and
• all non-zero entries below the second row are strictly to the right of the left-most entry in the second row.

C5 =

 1 −2 −1 1 0 2 0
0 0 2 3 5 −7 12
0 0 1 1 2 −3 5
0 0 2 2 4 −6 10

 R2↔R3−−−−−→ C6 =

 1 −2 −1 1 0 2 0
0 0 1 1 2 −3 5
0 0 2 3 5 −7 12
0 0 2 2 4 −6 10


−2R2+R3−−−−−−→ C7 =

 1 −2 −1 1 0 2 0
0 0 1 1 2 −3 5
0 0 0 1 1 −1 2
0 0 2 2 4 −6 10


−2R2+R4−−−−−−→ C8 =

 1 −2 −1 1 0 2 0
0 0 1 1 2 −3 5
0 0 0 1 1 −1 2
0 0 0 0 0 0 0



(d) Consider the matrix C8. Leave the first two rows alone for now.
Unless C8 is a row-echelon form, we apply appropriate row operations to obtain a matrix in which

• the left-most non-zero entry in the third row is 1, and
• all non-zero entries below the third row are strictly to the right of the left-most entry in the third row.

And so forth and so on.
We observe that C8 is already a row-echelon form.

(e) Now we move on from C8.
We apply appropriate row operations to ‘eliminate’ all the non-zero entries above the various leading ones in
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the non-zero rows of C8.

C8 =

 1 −2 −1 1 0 2 0
0 0 1 1 2 −3 5
0 0 0 1 1 −1 2
0 0 0 0 0 0 0

 1R2+R1−−−−−→ C9 =

 1 −2 0 2 2 −1 5
0 0 1 1 2 −3 5
0 0 0 1 1 −1 2
0 0 0 0 0 0 0


−2R3+R1−−−−−−→ C10 =

 1 −2 0 0 0 1 1
0 0 1 1 2 −3 5
0 0 0 1 1 −1 2
0 0 0 0 0 0 0


−1R3+R2−−−−−−→ C11 =

 1 −2 0 0 0 1 1
0 0 1 0 1 −2 3
0 0 0 1 1 −1 2
0 0 0 0 0 0 0


C11 is a reduced row-echelon form which is row-equivalent to C.

8. Example (♯). (Gaussian elimination for matrices.)

(a) (Compare this with what you see in Example (2) in the handout What is solving a system of linear equations.)

C1 =

[
1 2 2 4
1 3 3 5
2 6 5 6

]
−1R1+R2−−−−−−→ C2 =

[
1 2 2 4
0 1 1 1
2 6 5 6

]

−2R1+R3−−−−−−→ C3 =

[
1 2 2 4
0 1 1 1
0 2 1 −2

]
−2R2+R3−−−−−−→ C4 =

[
1 2 2 4
0 1 1 1
0 0 −1 −4

]

−1R3−−−→ C5 =

[
1 2 2 4
0 1 1 1
0 0 1 4

]
−2R2+R1−−−−−−→ C6 =

[
1 0 0 2
0 1 1 1
0 0 1 4

]
−1R3+R2−−−−−−→ C7 =

[
1 0 0 2
0 1 0 −3
0 0 1 4

]

(b) (Compare this with what you see in Example (3) in the handout What is solving a system of linear equations.)

C1 =

[
1 −1 1 2
3 −2 1 7
−1 3 −5 3

]
−3R1+R2−−−−−−→ C2 =

[
1 −1 1 2
0 1 −2 1
−1 3 −5 3

]

1R1+R3−−−−−→ C3 =

[
1 −1 1 2
0 1 −2 1
0 2 −4 5

]
−2R2+R3−−−−−−→ C4 =

[
1 −1 1 2
0 1 −2 1
0 0 0 1

]

1R2+R1−−−−−→ C5 =

[
1 0 −1 3
0 1 −2 1
0 0 0 1

]
−3R3+R1−−−−−−→ C6 =

[
1 0 −1 0
0 1 −2 1
0 0 0 1

]
−1R3+R2−−−−−−→ C7 =

[
1 0 −1 0
0 1 −2 0
0 0 0 1

]

(c) (Compare this calculation with what you see in Example (4) in the handout What is solving a system of linear
equations.)

C1 =

[
0 1 −2 1
−1 −2 3 −4
2 7 −12 11

]
R1↔R2−−−−−→ C2 =

[
−1 −2 3 −4
0 1 −2 1
2 7 −12 11

]

−1R1−−−→ C3 =

[
1 2 −3 4
0 1 −2 1
2 7 −12 11

]
−2R1+R3−−−−−−→ C4 =

[
1 2 −3 4
0 1 −2 1
0 3 −6 3

]

−3R2+R3−−−−−−→ C5 =

[
1 2 −3 4
0 1 −2 1
0 0 0 0

]
−2R2+R1−−−−−−→ C6 =

[
1 0 1 2
0 1 −2 1
0 0 0 0

]

(d) (Compare this calculation with what you see in Example (5) in the handout What is solving a system of linear
equations.)

C1 =

[
1 2 0 1 7
1 1 1 −1 3
3 1 5 −7 1

]
−1R1+R2−−−−−−→ C2 =

[
1 2 0 1 7
0 −1 1 −2 −4
3 1 5 −7 1

]

−3R1+R3−−−−−−→ C3 =

[
1 2 0 1 7
0 −1 1 −2 −4
0 −5 5 −10 −20

]
−1R2−−−→ C4 =

[
1 2 0 1 7
0 1 −1 2 4
0 −5 5 −10 −20

]

5R2+R3−−−−−→ C5 =

[
1 2 0 1 7
0 1 −1 2 4
0 0 0 0 0

]
−2R6+R1−−−−−−→ C6 =

[
1 0 2 −3 −1
0 1 −1 2 4
0 0 0 0 0

]
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(e) (Compare this calculation with what you see in Example (6) in the handout What is solving a system of linear
equations.)

C1 =

[
0 1 1 2 2 2
1 2 3 2 3 4
−2 −1 −3 3 1 3

]
R1↔R2−−−−−→ C2 =

[
1 2 3 2 3 4
0 1 1 2 2 2
−2 −1 −3 3 1 3

]

2R1+R3−−−−−→ C3 =

[
1 2 3 2 3 4
0 1 1 2 2 2
0 3 3 7 7 11

]
−3R2+R3−−−−−−→ C4 =

[
1 2 3 2 3 4
0 1 1 2 2 2
0 0 0 1 1 5

]

−2R2+R1−−−−−−→ C5 =

[
1 0 1 −2 −1 0
0 1 1 2 2 2
0 0 0 1 1 5

]
2R3+R1−−−−−→ C6 =

[
1 0 1 0 1 10
0 1 1 2 2 2
0 0 0 1 1 5

]

−2R3+R2−−−−−−→ C7 =

[
1 0 1 0 1 10
0 1 1 0 0 −8
0 0 0 1 1 5

]

Remark. When compared the respective calculations below to what you see in Examples (2), (3), (4), (5), (6) in
the handout What is solving a system of linear equations, these calculations are seen to be applications of Gaussian
elimination to the augmented matrix representations of the systems considered in the other handout.
In each calculation here, we reach the unique reduced row-echelon form row-equivalent to the matrix with which we
start the calculation.
In the context of solving the systems in Examples (2), (4), (5), (6), the respective reduced row-echelon forms are
significant in the sense that they correspond to systems from which we can read off solutions easily.

9. Appendix: How Gaussian elimination is applied to a matrix to obtain a reduced row-echelon form.
Suppose A is a matrix. We proceed to apply row operations to obtain successive matrices which are row-equivalent
to A, until we obtain a reduced row-echelon form which is row equivalent to A.

(a) If A is a row-echelon form, take Â = A and go straight to Procedure ω.
(b) Suppose A is not a row-echelon form. (Then A contains some non-zero entry.) Proceed to obtain a matrix,

labelled Â, which is row-equivalent to A as follows:—
i. Procedure α.

A. If A reads as
A =

[
0 · · · 0 † ⋆
0 · · · 0 ⋆ ⋆

]
in which † is a non-zero number, then take A′ = A.
If not, obtain from A, by applying the row operation ‘R1 ↔ Rk’ for some appropriate k, a matrix
which reads so. Label the resultant matrix as A′.

B. If A′ reads as
A′ =

[
0 · · · 0 1 ⋆
0 · · · 0 ⋆ ⋆

]
,

then take A′′ = A′.
If not, obtain from A′, by applying the row operation ‘βR1’ for some appropriate β, the matrix which
reads so. Label the result matrix as A′′.

C. If A′′ reads as
A∗ =

[
0 · · · 0 1 ⋆
0 · · · 0 0 B

]
then take A∗ = A′′.
If not, obtain from A′′, by (repeatedly) applying row operations of the type ‘αR1 +Rk’ to obtain the
matrix which reads so. Label the resultant matrix as A∗.

With the matrix A∗ go into Procedure β.
ii. Procedure β.

Consider the matrix B ‘sitting inside A∗’.
If B is a row-echelon form, then A∗ is a row echelon form. We take A∗ = Â and go straight to Procedure
ω.
Suppose B is not a row-echelon form. Then obtain a matrix, labelled A∗∗, from A∗ by this ‘sub-procedure’:
A. Replace the symbol ‘A’ with the symbol ‘B’ in Procedure α to obtain from B a matrix B∗ which

reads:
B∗ =

[
0 · · · 0 1 ⋆
0 · · · 0 0 C

]
.
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B. Now obtain the matrix A∗∗, with the same number of rows and the same number of columns as A∗,
which reads:

A∗∗ =
[

0 · · · 0 1 ⋆
0 · · · 0 0 B∗

]
=

[
0 · · · 0 1 ⋆ · · · ⋆ ⋆ ⋆
0 · · · 0 0 0 · · · 0 1 ⋆
0 · · · 0 0 0 · · · 0 0 C

]
.

iii. If C is a row-echelon form, then A∗∗ is a row-echelon form. We take A∗∗ = Â and then go straight to
Procedure ω.
If C is not a row-echelon form, then imitate the ‘sub-procedure’ inside Procedure β to obtain successive
matrices A∗∗∗, A∗∗∗∗, ..., with the same number of rows and the same number of columns, which are row-
equivalent to A, until a row-echelon form is obtained:

A∗∗∗ =

 0 · · · 0 1 ⋆ · · · ⋆ ⋆ ⋆ · · · ⋆ ⋆ ⋆
0 · · · 0 0 0 · · · 0 1 ⋆ · · · ⋆ ⋆ ⋆
0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 ⋆
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 D

 ,

A∗∗∗∗ =


0 · · · 0 1 ⋆ · · · ⋆ ⋆ ⋆ · · · ⋆ ⋆ ⋆ · · · ⋆ ⋆ ⋆
0 · · · 0 0 0 · · · 0 1 ⋆ · · · ⋆ ⋆ ⋆ · · · ⋆ ⋆ ⋆
0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 ⋆ · · · ⋆ ⋆ ⋆
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 1 ⋆
0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 0 · · · 0 0 E


...

Label, as Â, the resultant row-echelon form, which is by construction row equivalent to A. Then go to
Procedure ω.

(c) Procedure ω.
Consider the row-echelon form Â which is row-equivalent to A.

i. If Â is a reduced row-echelon form, then ‘stop’.
ii. Suppose Â is not a reduced row-echelon form.

For each row which contains a leading one, apply row operations of the type ‘αRk + Ri’ repeatedly to
obtain a reduced row-echelon form which is row-equivalent to Â and to A.
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