
1. Definition. (Matrix.)
A (p× q)-rectangular array 

c11 c12 · · · c1q
c21 c22 · · · c2q
... ... ...
cp1 cp2 · · · cpq


in which the cij’s are real numbers is called a (p× q)-matrix with real entries, with p rows
and q columns.

Suppose We denote this matrix by C.

For each fixed i = 1, 2, · · · , p and j = 1, 2, · · · , q, we refer to the number cij as the (i, j)-th
entry of C.

For each fixed k = 1, 2, · · · , p, we refer to the array
[
ck1 ck2 · · · ckq

]
, as the k-th row of

C.

For each fixed ℓ = 1, 2, · · · , q, we refer to the array


c1ℓ
c2ℓ
...
cqℓ

, as the ℓ-th column of C.
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2. Definition. (Row operation ‘adding a scalar multiple of one row to an-
other’.)
Let C be a (p × q)-matrix whose (i, j)-th entry is denoted by cij, and whose k-th row is
denoted by Rk.
Suppose α is a real number.
When we replace the k-th row

[
ck1 ck2 · · · ckq

]
of C by[

αci1 + ck1 αci2 + ck2 · · · αciq + ckq
]
,

in which i ̸= k, to obtain the resultant matrix C ′, we say we are applying the row operation
‘α ·Ri +Rk’ to C, and write C

αRi+Rk−−−−→ C ′.
Such a row operation is called ‘adding a scalar multiple of one row of C to another row of
C’.

3. Examples on ‘adding a scalar multiple of one row to another’.

(a) C =

 1 0 1 1

0 2 1 1

1 0 0 2

 1R1+R2−−−−→ C ′ =

 1 0 1 1

1 2 2 2

1 0 0 2

.

(b) C ′ =

 1 0 1 1

1 2 2 2

1 0 0 2

 2R2+R1−−−−→ C ′′ =

 3 4 5 5

1 2 2 2

1 0 0 2

.
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4. Definition. (Row operation ‘multiplying a non-zero scalar to a row’.)
Let C be a (p × q)-matrix whose (i, j)-th entry is denoted by cij, and whose k-th row is
denoted by Rk.
Suppose β is a non-zero real number.
When replace the k-th row

[
ck1 ck2 · · · ckq

]
of C by[

βck1 βck2 · · · βckq
]

to obtain the resultant matrix C ′, we say we are applying the row operation ‘β ·Rk’ to C,
and write C

βRk−−→ C ′.
Such a row operation is called ‘multiplying a non-zero scalar to a row of C’.

5. Examples on ‘multiplying a non-zero scalar to a row’.

(a) C =

 1 2 2 −1
2 −2 1 0

1 0 0 2

 4R2−−→ C ′ =

 1 2 2 −1
8 −8 4 0

1 0 0 2

.

(b) C ′ =

 1 2 2 −1
8 −8 4 0

1 0 0 2

 −2R1−−−→ C ′′ =

 −2 −4 −4 2

8 −8 4 0

1 0 0 2

.
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6. Definition. (Row operation ‘interchanging two rows’.)
Let C be a (p × q)-matrix whose (i, j)-th entry is denoted by cij, and whose k-th row is
denoted by Rk.
When we interchange the i-th row

[
ci1 ci2 · · · ciq

]
and the k-th row

[
ck1 ck2 · · · ckq

]
of C, in which i ̸= k, to obtain the resultant matrix C ′, we say we are applying the row
operation ‘Ri ←→ Rk’ to C, and write C

Ri↔Rk−−−−→ C ′.
Such a row operation is called ‘interchanging two rows of C’.

7. Examples on ‘interchanging two rows’.

(a) C =

 1 2 2 0

3 0 3 1

2 1 0 1

 R1↔R2−−−−→ C ′ =

 3 0 3 1

1 2 2 0

2 1 0 1

.

(b) C ′ =

 3 0 3 1

1 2 2 0

2 1 0 1

 R2↔R3−−−−→ C ′′ =

 3 0 3 1

2 1 0 1

1 2 2 0

.
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8. Definition. (Row operations.)
Let C,C ′ be (p× q)-matrices with real entries.

We say we are applying one row operation on C to obtain C ′ if and only if C ′ is the resultant
of the application of

• one row operation ‘adding a scalar multiple of one row of C to another row of C’, or

• one row operation ‘multiplying a non-zero scalar to a row of C’, or

• one row operation ‘interchanging two rows of C’.
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9. Definition. (Sequences of row operations.)
Let C1, C2, · · · , CN−1, CN be finitely many (p× q)-matrices.

Suppose that for each k, Ck+1 is the resultant of the application of one row operation on
Ck.

Then we say that C1, C2, · · · , CN−1, CN is joint by a sequence of row operations.

When we want to emphasize that for each k, the row operation ρk is applied to Ck to obtain
Ck+1, we will present this sequence as

C1−→
ρ1

C2−→
ρ2
· · · −→

ρN−2
CN−1−→

ρN−1
CN .

We may also refer to such a sequence as the sequence of row operations ρ1, ρ2, · · · , ρN−1
when we want to emphasize the role of the row operations.

Remark. When N = 1, we have the ‘trivial sequence’ of row operations ‘C1’.
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10. Examples on sequences of row operations.

(a) C =

 1 0 1 1

0 2 1 1

1 0 0 2

 1R1+R2−−−−→ C ′ =

 1 0 1 1

1 2 2 2

1 0 0 2

 2R2+R1−−−−→ C ′′ =

 3 4 5 5

1 2 2 2

1 0 0 2

.

(b) C =

 1 2 2 −1
2 −2 1 0

1 0 0 2

 4R2−−→ C ′ =

 1 2 2 −1
8 −8 4 0

1 0 0 2

 −2R1−−−→ C ′′ =

 −2 −4 −4 2

8 −8 4 0

1 0 0 2

.

(c) C =

 1 2 2 0

3 0 3 1

2 1 0 1

 R1↔R2−−−−→ C ′ =

 3 0 3 1

1 2 2 0

2 1 0 1

 R2↔R3−−−−→ C ′′ =

 3 0 3 1

2 1 0 1

1 2 2 0

.

(d) C =

 1 0 1 1

0 2 1 1

1 0 0 2

 1R1+R2−−−−→ C ′ =

 1 0 1 1

1 2 2 2

1 0 0 2

 2R3−−→ C ′′ =

 1 0 1 1

1 2 2 2

2 0 0 4


R1↔R3−−−−→ C ′′′ =

 2 0 0 4

1 2 2 2

1 0 1 1

.
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11. Theorem (1). (Existence and uniqueness of ‘reverse row operations’.)
Let C,C ′ be (p× q)-matrices.

Suppose C ′ is obtained from C by the application of a row operation ρ on C.

Then there exists some unique row operation ρ̃ on C ′ such that C is obtained from C ′ by
the application of ρ̃ on C ′.

Proof. A tedious (but easy) word game playing with the definitions.

Remark. We refer to ρ̃ as the ‘reverse’ row operation corresponding to ρ.

Row operation
changing C to C ′.

‘Reverse’ row operation
changing C ′ to C.

C
αRi+Rk−−−−→ C ′. C ′

−αRi+Rk−−−−−→ C.
C

βRk−−→ C ′. C ′
(1/β)Rk−−−−→ C.

C
Ri↔Rk−−−−→ C ′. C ′

Ri↔Rk−−−−→ C.
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12. Examples.

(a) C =

 1 0 1 1

0 2 1 1

1 0 0 2

 1R1+R2−−−−→ C ′ =

 1 0 1 1

1 2 2 2

1 0 0 2

 2R2+R1−−−−→ C ′′ =

 3 4 5 5

1 2 2 2

1 0 0 2

.

Corresponding reverse row operations, ‘recovering’ C from C ′′:

C ′′ =

 3 4 5 5

1 2 2 2

1 0 0 2

 −2R2+R1−−−−−→ C ′ =

 1 0 1 1

1 2 2 2

1 0 0 2

 −1R1+R2−−−−−→ C =

 1 0 1 1

0 2 1 1

1 0 0 2

.

(b) C =

 1 2 2 −1
2 −2 1 0

1 0 0 2

 4R2−−→ C ′ =

 1 2 2 −1
8 −8 4 0

1 0 0 2

 −2R1−−−→ C ′′ =

 −2 −4 −4 2

8 −8 4 0

1 0 0 2

.

Corresponding reverse row operations, ‘recovering’ C from C ′′:

C ′′ =

 −2 −4 −4 2

8 −8 4 0

1 0 0 2

 −1
2R1−−−→ C ′ =

 1 2 2 −1
8 −8 4 0

1 0 0 2

 −1
4R2−−−→ C =

 1 2 2 −1
2 −2 1 0

1 0 0 2

.
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(c) C =

 1 2 2 0

3 0 3 1

2 1 0 1

 R1↔R2−−−−→ C ′ =

 3 0 3 1

1 2 2 0

2 1 0 1

 R2↔R3−−−−→ C ′′ =

 3 0 3 1

2 1 0 1

1 2 2 0

.

Corresponding reverse row operations, ‘recovering’ C from C ′′:

C ′′ =

 3 0 3 1

2 1 0 1

1 2 2 0

 R2↔R3−−−−→ C ′ =

 3 0 3 1

1 2 2 0

2 1 0 1

 R1↔R2−−−−→ C =

 1 2 2 0

3 0 3 0

2 1 0 1

.
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(d) C =

 1 0 1 1

0 2 1 1

1 0 0 2

 1R1+R2−−−−→ C ′ =

 1 0 1 1

1 2 2 2

1 0 0 2

 2R3−−→ C ′′ =

 1 0 1 1

1 2 2 2

2 0 0 4


R1↔R3−−−−→ C ′′′ =

 2 0 0 4

1 2 2 2

1 0 1 1

.

Corresponding reverse row operations, ‘recovering’ C from C ′′′:

C ′′′ =

 2 0 0 4

1 2 2 2

1 0 1 1

 R1↔R3−−−−→ C ′′ =

 1 0 1 1

1 2 2 2

2 0 0 4

 (1/2)R3−−−−→ C ′ =

 1 0 1 1

1 2 2 2

1 0 0 2


−1R1+R2−−−−−→ C =

 1 0 1 1

0 2 1 1

1 0 0 2

.

These examples are manifestations of the phenomenon described by Theorem (2).
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13. Theorem (2).
Suppose C1, C2, · · · , CN is a sequence of (p× q)-matrices joint by row operations

ρ1, ρ2, · · · , ρN−1
respectively:

C1−→
ρ1

C2−→
ρ2
· · · −→

ρN−2
CN−1−→

ρN−1
CN .

Then CN , · · · , C2, C1 is a sequence of (p× q)-matrices joint by row operations
ρ̃N−1, · · · , ρ̃2, ρ̃1

respectively, in which ρ̃k is the ‘reverse row operation’ of ρk for each k:
CN −→

ρ̃N−1
CN−1−→

ρ̃N−2
· · · −→̃

ρ2
C2−→̃

ρ1
C1.

Proof. The argument is a repeated application of Theorem (1).
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14. Definition. (Row-equivalent matrices.)
Let C,D be (p× q)-matrices.

Suppose there is a finite sequence of row operations starting from C and ending at D.

Then we say that C is row-equivalent to D.

15. Question. How to show that a given (p×q)-matrix C is row-equivalent to a (p×q)-matrix
D?

Answer. Write down a finite sequence of (p× q)-matrices, say,
C = C1 −→ C2 −→ · · · −→ CN−1 −→ CN = D

joint by row operations, one at each step.
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Illustration.

Let C =

[
1 0 1

0 2 1

]
and D =

[
3 6 6

8 −8 4

]
.

We verify that C is row-equivalent to D:

C = C1 =

[
1 0 1

0 2 1

]
1R1+R2−−−−→ C2 =

[
1 0 1

1 2 2

]
3R1−−→ C3 =

[
3 0 3

1 2 2

]
R1↔R2−−−−→ C4 =

[
1 2 2

3 0 3

]
−1R1+R2−−−−−→ C5 =

[
1 2 2

2 −2 1

]
4R2−−→ C6 =

[
1 2 2

8 −8 4

]
3R1−−→ C7 = D =

[
3 6 6

8 −8 4

]
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16. Theorem (3). (Row-equivalence as an ‘equivalence relation’.)
The statements below hold:

(a) Suppose C is a (p× q)-matrix. Then C is row-equivalent to C.

(b) Let C,D be (p × q)-matrices. Suppose C is row-equivalent to D. Then D is row-
equivalent to C.

(c) Let C,D,E be (p × q)-matrices. Suppose C is row-equivalent to D and D is row-
equivalent to E. Then C is row-equivalent to E.

Proof. Exercise.
Remark. According to Theorem (3), the collection of all (p× q)-matrices are split into
various ‘cliques’ according to the question whether one (p× q)-matrix is row-equivalent to
another (p× q)-matrix. If yes, then the two matrices concerned are in the same ‘clique’; if
no, they are not.

17. Appendix: column operations.
There are ‘mathematical objects’ known as column operations on matrices. They are defined
in an analogous way as row operations. There are analogous results on column operations.
In this course most of the time we will need row operations only. There is no need to worry
about column operations until further noticed.
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