
MATH1030 Basic terminologies on systems of linear equations

1. Definition. (Systems of linear equations.)
Let aij be (fixed) real numbers for each i = 1, · · · ,m and for each j = 1, · · · , n.
Let bk be (fixed) real numbers for each k = 1, · · · ,m.

(a) The system of m simultaneous equations with unknowns x1, x2, · · · , xn
a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1 + am2x2 + · · · + amnxn = bm

is called a system of m linear equations with n unknowns.
The numbers aij ’s, bk’s are referred to as givens in this system of linear equations.

(b) Denote such a system of linear equations by (S).
Let t1, t2, · · · , tn be (fixed) real numbers.
We say (x1, x2, · · · , xn) = (t1, t2, · · · , tn) is a solution of the system (S) if and only if the m equalities

a11t1 + a12t2 + · · · + a1ntn = b1,
a21t1 + a22t2 + · · · + a2ntn = b2,

...
am1t1 + am2t2 + · · · + amntn = bm

hold simultaneously.
(c) (Again denote such a system of linear equations by (S).)

i. We say (S) is consistent if and only if there is some solution for (S).
ii. We say (S) is inconsistent if and only if there is no solution for (S).

2. Definition. (Equation operation ‘adding a scalar multiple of one equation to another’.)
Consider the system of linear equations

(S) :


a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1 + am2x2 + · · · + amnxn = bm

in which x1, x2, · · · , xn are the unknowns.
Suppose α is a real number.
When we replace the k-th equation

ak1x1 + ak2x2 + · · ·+ aknxn = bk

of (S) by the equation

(αai1 + ak1)x1 + (αai2 + ak2)x2 + · · ·+ (αain + akn)xn = αbi + bk,

in which i ̸= k, to obtain some (other) system, we say we are applying the equation operation ‘α× i⃝ + k⃝’ to (S).
Such an equation operation is called ‘adding a scalar multiple of one equation of (S) to another equation of (S)’.

3. Definition. (Equation operation ‘multiplying a non-zero scalar to one equation’.)
Consider the system of linear equations

(S) :


a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1 + am2x2 + · · · + amnxn = bm

in which x1, x2, · · · , xn are the unknowns.
Suppose β is a non-zero real number.
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When we replace the k-th equation
ak1x1 + ak2x2 + · · ·+ aknxn = bk

of (S) by the equation
βak1x1 + βak2x2 + · · ·+ βaknxn = βbk,

to obtain some (other) system, we say we are applying the equation operation ‘β × k⃝’ to (S).
Such an equation operation is called ‘multiplying a non-zero scalar to one equation of (S)’.

4. Definition. (Equation operation ‘interchanging two equations’.)
Consider the system of linear equations

(S) :


a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1 + am2x2 + · · · + amnxn = bm

in which x1, x2, · · · , xn are the unknowns.
When we interchange the i-th equation

ai1x1 + ai2x2 + · · ·+ ainxn = bi

of (S) and the k-th equation
ak1x1 + ak2x2 + · · ·+ aknxn = bk

of (S), in which i ̸= k, to obtain some (other) system, we say we are applying the equation operation ‘ i⃝ ↔ k⃝’ to
(S).
Such an equation operation is called ‘interchanging two equations of (S)’.

5. Definition. (Equation operations.)
Let (S), (T ) be systems of m linear equations with n unknowns.
We say we are applying one equation operation on (S) to obtain the system (T ) if and only if (T ) is the resultant
of the application of

• one equation operation ‘adding a scalar multiple of one equation of (S) to another’, or
• one equation operation ‘multiplying a non-zero scalar to one equation (S)’, or
• one equation operation ‘interchanging two equations of (S)’.

6. Definition. (Equivalent systems of linear equations.)
Let (S), (T ) be systems of m linear equations with n unknowns.
We say (S) is equivalent to (T ) as systems if and only if both statements below hold:

(a) Every solution of (S) is a solution of (T ).
(b) Every solution of (T ) is a solution of (S).

7. Theorem (1).
Let (S), (T ) be systems of m linear equations with n unknowns.

(a) Suppose (T ) is resultant from the application of one equation operation on (S). Then (S) is equivalent to (T )
as systems.

(b) Suppose (T ) is resultant from the application of finitely many equation operations, starting from (S). Then
(S) is equivalent to (T ) as systems.

Proof. A tedious (but easy) word game on the definitions.

8. Theorem (2).
The statements below hold:
(a) Suppose (S) is a system of m linear equations with n unknowns. Then (S) is equivalent to (S) as systems.
(b) Let (S), (T ) be systems of m linear equations with n unknowns.

Suppose (S) is equivalent to (T ) as systems. Then (T ) is equivalent to (S) as systems.
(c) Let (S), (T ), (U) be systems of m linear equations with n unknowns.

Suppose (S) is equivalent to (T ) as systems, and (T ) is equivalent to (U) as systems. Then (S) is equivalent
to (U) as systems.

Proof. A tedious (but easy) word game on the definitions.
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9. Illustration of the relevance of Theorem (1) through a concrete example.
Consider the question:

What are the solutions of the system of linear equations

(S)

{
x2 − 2x3 = 1

−x1 − 2x2 + 3x3 = −4
2x1 + 7x2 − 12x3 = 11

with unknowns x1, x2, x3 in the reals, if there is any at all?

(a) We can answer this question through the three-step process:—

• Step 1. Searching for ‘candidate solution’ for the system of equations.
Suppose (x1, x2, x3) is a solution of (S). Then blah-blah-blah. Therefore it is possible for (x1, x2, x3) to
be (2− t, 1 + 2t, t) for some real number t, and there is no other possibility.

• Step 2. Checking ‘candidate solution’.
Suppose (x1, x2, x3) = (2− t, 1+2t, t) for some real number t. Then blah-blah-blah. Therefore (x1, x2, x3)

is indeed a solution of the system concerned.
• Step 3. Drawing conclusion.

The solutions of the system concerned is given by (x1, x2, x3) = (2 − t, 1 + 2t, t) where t are arbitrary
numbers.

(b) The manipulation in the ‘blah-blah-blah’ in Step 1 is this chain of manipulation on the symbols x1, x2, x3,
which stand for some concrete real numbers in Step 1:

(S1)

{
x2 − 2x3 = 1 —– 1⃝

−x1 − 2x2 + 3x3 = −4 —– 2⃝
2x1 + 7x2 − 12x3 = 11 —– 3⃝

1⃝ ↔ 2⃝ : (S2)

{ −x1 − 2x2 + 3x3 = −4 —– 4⃝
x2 − 2x3 = 1 —– 5⃝

2x1 + 7x2 − 12x3 = 11 —– 3⃝

(−1)× 4⃝ : (S3)

{
x1 + 2x2 − 3x3 = 4 —– 6⃝

x2 − 2x3 = 1 —– 5⃝
2x1 + 7x2 − 12x3 = 11 —– 3⃝

(−2)× 6⃝ + 3⃝ : (S4)

{
x1 + 2x2 − 3x3 = 4 —– 6⃝

x2 − 2x3 = 1 —– 5⃝
3x2 − 6x3 = 3 —– 7⃝

(−3)× 5⃝ + 7⃝ : (S5)

{
x1 + 2x2 − 3x3 = 4 —– 6⃝

x2 − 2x3 = 1 —– 5⃝
0 = 0 —– 8⃝

(−2)× 5⃝ + 6⃝ : (S6)

{
x1 + x3 = 2 —– 9⃝

x2 − 2x3 = 1 —– 5⃝
0 = 0 —– 8⃝

(c) Now we re-interpret this chain of manipulation that we write in Step 1 (in search of ‘candidate solutions’ of
(S)).
Regard the symbols x1, x2, x3 as unknowns arising from the system (S) throughout the manipulation.
Then (S1), (S2), · · · , (S6) are just the successive systems resultant from an application of equations operations,
starting with the system (S).
Theorem (1) tells us that each of (S1), (S2), · · · , (S6) is equivalent to each other. So the solutions of (S1) and
(S6) are the same.
We can read off the solutions of (S6) easily (from the relations x1 = 2 − x3, x2 = 1 + 2x3), and hence of (S)
itself.
So having presented the manipulation done in Step 1 above (and interpreting the manipulation as applications
of equation operations), we may jump directly to the conclusion stated in Step 3:

The solutions of the system concerned is given by (x1, x2, x3) = (2 − t, 1 + 2t, t) where t are arbitrary
numbers.
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