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Suggested Solution to Assignment 3

Exercise 3.1

1. By the method of odd extension or formula (6), we have

u(x, t) =
1√
4πkt

∫ ∞

0
[e−(x−y)2/4kt − e−(x+y)2/4kt]e−ydy

=
1√
4πkt

∫ ∞

0
[e−

(y+2kt−x)2

4kt
+kt−x − e−

(x+y+2kt)2

4kt
+kt+x]dy

=
1√
π
ekt−x

∫ ∞

2kt−x√
4kt

e−p2dp− 1√
π
ekt+x

∫ ∞

2kt+x√
4kt

e−p2dp

=
1

2
ekt−x[1− E rf(

2kt− x√
4kt

)− 1

2
ekt+x[1− E rf(

2kt+ x√
4kt

)

where E rf(x) is defined by

E rf(x) =
2√
π

∫ x

0
e−p2dp.

2. Let v(x, t) = u(x, t)− 1. Then v(x, t) will satisfy

vt = kvxx, v(x, 0) = −1, v(0, t) = 0.

Hence,

v(x, t) = − 1√
4πkt

∫ ∞

0
[e−

(x−y)2

4kt − e−
(x+y)2

4kt ]dy

= −E rf(
x√
4kt

).

u(x, t) = v(x, t) + 1 = 1− E rf(
x√
4kt

). �

3. By the method of even reflection, we can translate the original problem for the half-line to the problem
for the whole line and then using the formula for the latter to obtain

w(x, t) =
1√
4πkt

∫ ∞

0
[e−(x−y)2/4kt + e−(x+y)2/4kt]ϕ(y)dy.

For the details, please see your textbook. �

4. (a) With the rule for differentiation under an integral sign and the property of source function, v(x, t)
satisfies

vt = kvxx, v(x, 0) = f(x).

(b) By (a), w(x, t) satisfies
wt = kwxx, w(x, 0) = f ′(x)− 2f(x).

(c) By the definition of f ,

f ′(x)− 2f(x) =

{
1− 2x, x > 0;

−1− 2x, x < 0.

f ′(−x)− 2f(−x) =

{
−1 + 2x, x > 0;

1 + 2x, x < 0.

= −[f ′(x)− 2f(x)].

Hence, f ′(x)− 2f(x) is an odd function.
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(d) Since w(x, 0) is an odd function, using the conclusion in Exercise 2.4.11, w is an odd function of x.

(e) By (a), v(x, t) satisfies DE and IC. By (d), v(x, t) satisfies BC. Thus we have proved that v(x, t)
satisfies (1) for x > 0. Hence, using the assumption for the uniqueness, the solution of (1) is given
by

u(x, t) =
1√
4πkt

∫ ∞

−∞
e−(x−y)2/4ktf(y)dy,

where

f(y) =

{
y, y > 0;

y + 1, y < 0.
�

Exercise 3.2

1. By the method of even extension, we have

v(x, t) =
1

2
[ϕeven(x+ ct) + ϕeven(x− ct)] +

1

2c

∫ x+ct

x−ct
ψeven(y)dy

=

{
1
2 [ϕ(x+ ct) + ϕ(x− ct)] + 1

2c

∫ x+ct
x−ct ψ(y)dy, x ≥ ct;

1
2 [ϕ(x+ ct) + ϕ(−x+ ct)] + 1

2c [
∫ x+ct
0 ψ(y)dy +

∫ −x+ct
0 ψ(y)dy], 0 < x < ct.

It is similar for t < 0.

2. We can do this problem by even extension, then we obtain the solution to this problem u(x, t) =
1
2c

∫ x+ct
x−ct ψext(s)ds, where ψext(s) = V for a < s < 2a, −2a < s < −a, and zero otherwise. Substi-

tute t = 0, a/c, 3a/2c, 2a/c, 3a/c into this formula and we omit it. �

3. If the string is fixed at the end x = 0, then we have the homogeneous Dirichlet condition u(0, t) = 0.
Therefore the vibrations u(x, t) of the string for t > 0 is given the odd reflection formula with initial date
f(x) and cf ′(x), that is,

u(x, t) =

{
f(x+ ct) x ≥ ct

f(x+ ct)− f(ct− x) 0 < x < ct.
.

For details see the formulas (1)-(3) in section 3.2 of the book. �

5. Using the odd reflection method or formulas(2) and (3), we have

u(x, t) =

{
1, x > 2|t|;
0, x < 2|t|.

Hence the singularity is on the lines x = 2|t|. �

6. Since ut(0, t) + aux(0, t) = 0, we can consider the function w(x, t) defined on the whole line

w(x, t) =


ut(x, t) + aux(x, t) x > 0;

0, x = 0;

−ut(−x, t)− aux(−x, t), t < 0.

Here, ut(0, t) + aux(0, t) = 0 enables w(x, t) is continuous and differentiable around x = 0. Since w(x, t)
is a linear combination of derivatives of u(x, t), it also satisfies the wave equation, that is,

wtt = c2wxx.
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By direct calculation,

w(x, 0) = ϕ(x) =


V, x > 0;

0, x = 0;

−V, x < 0.

wt(x, 0) = utt(x, 0) + auxt(x, 0) = c2uxx(x, 0) + auxt(x, 0)

= c2∂2xx(0) + a∂x(V ) = 0.

Then the d’Alembert’s formula implies

w(x, t) =
1

2
[ϕ(x+ ct) + ϕ(x− ct)] =



V, x > ct,

V/2, x = ct,

0, −ct < x < ct,

−V/2 x = −ct,
−V x < −ct.

Let φ(s) = u(x + as, t + s), and then φ′(s) = ut + aux = w(x + as, t + s), φ(−t) = u(x − at, 0) = 0 and
φ(0) = u(x, t). Hence,

u(x, t) =

∫ 0

−t
w(x+ as, t+ s)ds.

Denote A = {(x1, t1); 0 ≤ t1 ≤ t} = {(x0, t0);x0 = ct0, 0 ≤ t0 ≤ t} ∩ {(x0, t0);x− x0 = a(t− t0), 0 ≤ t0 ≤
t}(i.e. (x1, t1) is the point where the line x0 = ct0 intersects the line x− x0 = a(t− t0) when 0 ≤ t0 ≤ t)
and B = {(x2, t2); 0 ≤ t1 ≤ t} = {(x0, t0);x0 = −ct0, 0 ≤ t0 ≤ t}∩{(x0, t0);x−x0 = a(t− t0), 0 ≤ t0 ≤ t}.
Hence, when x ≥ at, A = B = ∅ and

u(x, t) =

∫ 0

−t
V ds = V t;

when ct ≤ x ≤ at, t1 =
at− x

a− c
, t2 =

at− x

a+ c
and

u(x, t) =

∫ 0

t1−t
V ds+

∫ t2−t

−t
−V ds = V

x− ct

a− c
− V

at− x

a+ c
= V

2ax− (a2 + c2)t

a2 − c2
;

when 0 ≤ x ≤ ct, A = ∅, t2 =
at− x

a+ c
and

u(x, t) =

∫ t2−t

−t
−V ds = −V at− x

a+ c
. �

Exercise 3.3

1. Using the method of reflection and the formula (2) in Section 3.3, we have

u(x, t) =

∫ ∞

−∞
S(x− y, t)ϕodd(y)dy +

∫ t

0

∫ ∞

−∞
S(x− y, t− s)fodd(y, s)dyds

=

∫ ∞

0
[S(x− y, t)− S(x+ y, t)]ϕ(y)dy

+

∫ t

0

∫ ∞

0
[S(x− y, t− s)− S(x+ y, t− s)]f(y, s)dyds,
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where fodd(y, s) is the odd extension of f(y, s) w.r.t the variable y, and

S(x, t) =
1√
4πkt

e−
x2

4kt , t > 0. �

2. Let V (x, t) = v(x, t)− h(t). Then V (x, t) will satisfy

Vt − kVxx = f(x, t)− h′(t) for 0 < x <∞, 0 < t <∞,

V (0, t) = 0, V (x, 0) = ϕ(x)− h(0).

Using the result above, we have

V (x, t) =

∫ ∞

0
[S(x− y, t)− S(x+ y, t)][ϕ(y)− h(0)]dy

+

∫ t

0

∫ ∞

0
[S(x− y, t− s)− S(x+ y, t− s)][f(y, s)− h′(t)]dyds,

v(x, t) = h(t) +

∫ ∞

0
[S(x− y, t)− S(x+ y, t)][ϕ(y)− h(0)]dy

+

∫ t

0

∫ ∞

0
[S(x− y, t− s)− S(x+ y, t− s)][f(y, s)− h′(t)]dyds,

where fodd(y, s) and S(x, t) are shown above. �

3. Let W (x, t) = w(x, t)− xh(t). Then W (x, t) will satisfy

Wt − kWxx = −xh′(t) for 0 < x <∞, 0 < t <∞,

Wx(0, t) = 0, W (x, 0) = ϕ(x)− xh(0).

Using the method of reflection of even functions, we have

W (x, t) =

∫ ∞

−∞
S(x− y, t)ϕeven(y)dy +

∫ t

0

∫ ∞

−∞
S(x− y, t− s)feven(y, s)dyds

=

∫ ∞

0
[S(x− y, t) + S(x+ y, t)][ϕ(y)− yh(0)]dy

+

∫ t

0

∫ ∞

0
[S(x− y, t− s) + S(x+ y, t− s)][−yh′(s)]dyds,

w(x, t) =W (x, t) + xh(t),

where feven(y, s) is the even extension of f(y, s) in the variable y, and

S(x, t) =
1√
4πkt

e−
x2

4kt , t > 0. �

Exercise 3.4

1. By the Theorem 1 in Section 3.4, we have

u(x, t) =
1

2c

∫∫
∆

ys dyds =
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
ys dyds =

xt3

6
. �
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2. By the Theorem 1 in Section 3.4, we have

u(x, t) =
1

2c

∫∫
∆

eay dyds =
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
eay dyds

=


eax

a2c2

(
eact + e−act

2
− 1

)
, a ̸= 0;

1
2 t

2, a = 0.

�

3. By the Theorem 1 in Section 3.4, we have

u(x, t) =
1

2
[sin(x+ ct) + sin(x− ct)] +

1

2c

∫ x+ct

x−ct
(1 + s)ds+

1

2c

∫∫
∆

cos y dyds

= sinx cos(ct) + (x+ 1)t+
1

c2
cosx[1− cos(ct)]. �

4. Let u1 be the solution of the wave equation

utt = c2uxx + f, u(x, 0) = 0, ut(x, 0) = 0,

u2 be the solution of the wave equation

utt = c2uxx, u(x, 0) = ϕ(x), ut(x, 0) = 0,

u3 be the solution of the wave equation

utt = c2uxx, u(x, 0) = 0, ut(x, 0) = ψ(x).

Then u = u1+u2+u3 is the unique solution for the original problem since the equation and conditions are
linear and the uniqueness of the wave equation. Note that u1, u2, u3 are terms for f , ϕ and ψ respectively.
Hence the solution of the original problem can be written in the sum of three terms, one each for f , ϕ
and ψ. �

5. We write u(x, t) = 1
2c

∫ t
0

∫ x+ct−cs
x−ct+cs f(y, s)dyds. Then by direct calculation, we have

ux =
1

2c

∫ t

0
[f(x+ ct− cs)− f(x− ct+ cs)]ds, uxx =

1

2c

∫ t

0
[f ′(x+ ct− cs)− f ′(x− ct+ cs)]ds,

ut =
1

2

∫ t

0
[f(x+ ct− cs) + f(x− ct+ cs)]ds, utt = f(x) +

c

2

∫ t

0
[f ′(x+ ct− cs)− f ′(x− ct+ cs)]ds.

Hence, we have
utt = c2uxx + f

u(x, 0) =
1

2c

∫ 0

0

∫ x−cs

x+cs
f(y, s)dyds ≡ 0,

ut(x, 0) =
1

2

∫ 0

0
[f(x− cs) + f(x+ cs)]ds ≡ 0. �

8. For arbitrary C2 function ψ, Sψ = 1
2c

∫ x+ct
x−ct ψ(y)dy. We have

[Sψ]tt =
c

2
[ψ′(x+ ct)− ψ′(x− ct)] = c2[Sψ]xx.

[S (0)ψ] =
1

2c

∫ x

x
ψ(y)dy = 0, [St(0)ψ] =

1

2
[ψ(x) + ψ(x)] = ψ(x).

So we conclude that
Stt − c2Sxx = 0, S (0) = 0, St(0) = I. �

5



MATH 4220 (2017-18) partial diferential equations(the first edition) CUHK

9. According to the definition of u(x, t) and the result above, we have

ut = S (0)f(t) +

∫ t

0
St(t− s)f(s)ds =

∫ t

0
St(t− s)f(s)ds,

utt = St(0)f(t) +

∫ t

0
Stt(t− s)f(s)ds = f(t) +

∫ t

0
Stt(t− s)f(s)ds,

uxx =

∫ t

0
Sxx(t− s)f(s)ds.

So we conclude that

utt − c2uxx = f, u(x, 0) =

∫ 0

0
S (−s)f(s)ds = 0, ut(0) =

∫ 0

0
St(−s)f(s)ds = 0 �

12. For x0 > ct0 > 0, integrate over ∆, where ∆ is the region bounded by three lines

L0 = [(x0 − ct0, 0), (x0 + ct0, 0)], L1 = [(x0 + ct0, 0), (x0, t0)], L2 = [(x0, t0), (x0 − ct0, 0)]

(see figure 6 in Page 76), by Green’s theorem, we have∫∫
∆

fdxdt =

∫∫
∆

utt − c2uxxdxdt =

∫
L0+L1+L2

−c2uxdt− utdx

On L0, dt = 0, ut(x) = ψ(x),
∫
L0

−c2uxdt− utdx = −
∫ x0+ct0
x0−ct0

ψ(x)dx.

On L1, x+ ct = x0 + ct0 =⇒ dx+ cdt = 0,−c2uxdt− utdx = cuxdx+ cutdt = cdu.∫
L1

= c

∫
L1

du = cu(x0, t0)− cϕ(x0 + ct0)

By the same reasoning,
∫
L2

= −c
∫
L2
du = −cϕ(x0 − ct0) + cu(x0, t0). Summing the three terms, we have

for

u(x, t) =
1

2
[ϕ(x+ ct) + ϕ(x− ct)] +

1

2c

∫ x+ct

x−ct
ψ +

1

2c

∫∫
∆

f, if x > ct > 0. (1)

For x0 < ct0, integrate over ∆′, where ∆′ is the reflected region bounded by four lines

L0 = [(ct0 − x0, 0), (x0 + ct0, 0)], L1 = [(x0 + ct0, 0), (x0, t0)],

L2 = [(x0, t0), (0, t0 − x0/c)], L3 = [(0, t0 − x0/c), (ct0 − x0, 0)]

(see figure 2 in Page 72), by Green’s theorem, we have∫∫
∆′

fdxdt =

∫∫
∆′

utt − c2uxxdxdt =

∫
L0+L1+L2+L3

−c2uxdt− utdx

On L0, dt = 0, ut(x) = ψ(x). Hence, we have∫
L0

−c2uxdt− utdx = −
∫ x0+ct0

ct0−x0

ψ(x)dx,∫
L1

= c

∫
L1

du = cu(x0, t0)− cϕ(x0 + ct0),∫
L2

= −c
∫
L2

du = −ch(t0 − x0/c) + cu(x0, t0),∫
L3

= c

∫
L3

du = cϕ(ct0 − x0)− ch(t0 − x0/c).
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Summing the four terms, we have

u(x, t) =
1

2
[ϕ(x+ ct)− ϕ(ct− x)]− 1

2c

∫ x+ct

ct−x
ψ + h(t− x

c
) +

1

2c

∫∫
∆′

f, if 0 < x < ct. (2)

13. By the result above, f ≡ 0, ϕ(x) ≡ x, ψ(x) ≡ 0 and h(t) = t2 imply that

u(x, t) =


1
2 [ϕ(x+ ct) + ϕ(x− ct)] + 1

2c

∫ x+ct
x−ct ψ + 1

2c

∫∫
∆

f x ≥ ct > 0

1
2 [ϕ(x+ ct)− ϕ(ct− x)]− 1

2c

∫ x+ct
ct−x ψ + h(t− x

c ) +
1
2c

∫∫
∆′

f 0 < x < ct

=

{
x x ≥ ct > 0

x+ (t− x
c )

2 0 < x < ct
�

14. Let v(x, t) = u(x, t)− xk(t). Then v satisfies

vtt − c2vxx = −xk′′(t),

v(x, 0) = −xk(0), vt(x, 0) = −xk′(0), vx(0, t) = 0.

Then vx(0, t) = 0 enables us to have an even extension. So the solution of v is

v(x, t) =
1

2
[ϕeven(x+ ct) + ϕeven(x− ct)] +

1

2c

∫ x+ct

x−ct
ψeven +

1

2c

∫∫
∆

feven,

where ϕeven, ψeven and feven are the even extensions of ϕ, ψ and f respectively. Finally, we can have

u =

{
0 x ≥ ct;

−c
∫ t−x/c
0 k(s)ds x ≤ ct.

�

Exercise 3.5

1. Since
1√
4π

∫ ∞

0
e−p2/4dp = 1/2,

we have ∣∣∣ 1√
4π

∫ ∞

0
e−p2/4ϕ(x+

√
ktp)dp− 1

2
ϕ(x+)

∣∣∣ ≤ 1√
4π

∫ ∞

0
e−p2/4|ϕ(x+

√
ktp)− ϕ(x+)|dp

1√
4π

∫ ∞

p0

e−p2/4|ϕ(x+
√
ktp)− ϕ(x+)|dp+ 1√

4π

∫ p0

0
e−p2/4|ϕ(x+

√
ktp)− ϕ(x+)|dp

For ∀ϵ > 0, choose p0 large enough such that
∫∞
p0
e−p2/4dp is small enough and then

1√
4π

∫ ∞

p0

e−p2/4|ϕ(x+
√
ktp)− ϕ(x+)|dp ≤ C max|ϕ|

∫ ∞

p0

e−p2/4dp <
ϵ

2
;

after this, we can choose t is small enough such that

|ϕ(x+
√
ktp)− ϕ(x+)| < ϵ

and then
1√
4π

∫ p0

0
e−p2/4|ϕ(x+

√
ktp)− ϕ(x+)|dp ≤

(
1√
4π

∫ p0

0
e−p2/4dp

)
ϵ =

ϵ

2
.

7



MATH 4220 (2017-18) partial diferential equations(the first edition) CUHK

Hence,
1√
4π

∫ ∞

0
e−p2/4ϕ(x+

√
ktp) dp→ 1

2
ϕ(x+) as t↘ 0;

similarly we can prove that

1√
4π

∫ −∞

0
e−p2/4ϕ(x+

√
ktp) dp→ −1

2
ϕ(x−) as t↘ 0. �

2. Since ϕ(x) is bounded, by the same argument in Theorem 1, we can show that (1) is an infinitely differ-
entiable solution for t > 0. In addition, by Exercise 1,

lim
t↘0

u(x, t) =
1

2
[ϕ(x+) + ϕ(x−)]
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