Tutorial 5 for MATH4220

Rong ZHANG[∗]

February 8, 2018

1. Discuss why there is no maximum principle for wave equation? Consider the following Cauchy problem:

$$
\begin{cases} \partial_t^2 u - \partial_x^2 u = 0, & -\infty < x < +\infty, \quad t > 0 \\ u(x, t = 0) = 0, & \partial_t u(x, t = 0) = \sin x, & -\infty < x < +\infty \end{cases}
$$

And the unique solution is given by d'Alembert formula:

$$
u(x,t) = \frac{1}{2} \{ \cos(x+t) - \cos(x-t) \} = -\sin x \sin t, \quad -\infty < x < \infty, t > 0
$$

Then $u(x, t)$ attains its maximum 1 only at the interior points $(\frac{\pi}{2} \pm 2n\pi, \frac{3\pi}{2} + 2m\pi)$ or $(\frac{3\pi}{2} \pm 2n\pi, \frac{\pi}{2} + 2m\pi)$ for $n, m = 0, 1, 2, \cdots$. However, $u(x, t) = 0$ on the boundary $\{(x, t): t = 0\}.$ Therefore there is no maximum principle for the Cauchy problem for the 1-dimensitonal wave equation.

Remark: The key is to find an counterexample.

2. Use the Green's function of the heat equation to show that the backward heat equation is not well-posed.

Note that $S(x,t)$ satisfies $u_t = k u_{xx}$ for any $t > 0$, and $S(0,t) \to \infty$ as $t \to 0^+$. Then $u(x,t) = S(x,t+1)$ solves $u_t = k u_{xx}$ for $t > -1$. Then $S(0,t) \rightarrow \infty$ as $t \to -1^+$, which implies that there is no solution for the backward heat equation with initial data $u(x, 0) = S(x, 1) = \frac{1}{\sqrt{4k\pi}}e^{-\frac{x}{4k}}$, hence the backward heat equation is not well-posed.

3. Using Reflection Method to solve the following problem

$$
\begin{cases}\n\partial_t^2 u - c^2 \partial_x^2 u = 0, & x > 0, t > 0 \\
u(x, t = 0) = \phi(x), \partial_t u(x, t = 0) = \psi(x), & x > 0 \\
\partial_x u(x = 0, t) = 0, & t > 0\n\end{cases}
$$

Solution: Use the reflection method, and first consider the following Cauchy Problem:

$$
\begin{cases} \partial_t^2 v - c^2 \partial_x^2 v = 0, & -\infty < x < \infty, t > 0 \\ v(x, t = 0) = \phi_{even}(x), \partial_t v(x, t = 0) = \psi_{even}(x), & -\infty < x < \infty \end{cases}
$$

[∗]Any questions on notes, please contact me at rzhang@math.cuhk.edu.hk

where $\phi_{even}(x)$ and $\psi_{even}(x)$ are even extension of ϕ and ψ . Then the unique solution is given by d'Alembert formula:

$$
v(x,t) = \frac{1}{2} [\phi_{even}(x+ct) + \phi_{even}(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi_{even}(y) dy
$$

And since $\phi_{even}(x)$ and $\psi_{even}(x)$ are even, so is $v(x, t)$ for $t > 0$, which implies

$$
\partial_x v(x=0,t) = 0, t > 0.
$$

Set $u(x, t) = v(x, t), x > 0$, then $u(x, t)$ is the unique solution of Neumann Problem on the half-line. More presicely, if $x > ct$,

$$
u(x,t) = \frac{1}{2}[\phi(x+ct) + \phi(x-ct)] + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(y) dy
$$

if $0 < x < ct$,

$$
u(x,t) = \frac{1}{2}[\phi(x+ct) + \phi(ct-x)] + \frac{1}{2c} \Big\{ \int_0^{ct-x} \psi(y) dy + \int_0^{x+ct} \psi(y) dy \Big\}.
$$