Tutorial 1 for MATH4220

Rong ZHANG[∗]

January 11,2018

1. Review some basic facts in calculus.

• The fundamental theorem of calculus

Suppose that f is differential in $[a, b]$, we have

$$
f(b) - f(a) = \int_a^b f'(x) dx.
$$

• Green's Fromula

Let D be a bounded plane domain with a piecewise C^1 boundary curve $C =$ $bdyD$. Consider C to be parametrized so that it is traversed once with D on the left. Let $p(x, y)$ and $q(x, y)$ be any C^1 functions defined on $\overline{D} = D \cup C$. Then

$$
\iint_D (q_x - p_y) dx dy = \int_C pdx + q dy.
$$

• Divergence Theorem:

Let D be a bounded spatial domian with a piecewise $C¹$ boundary surface S. Let \vec{n} be the unit outward normal vector on S. Let $f(x)$ be any C^1 vector field on $\overline{D} = D \cup S$. Then

$$
\iiint_D \nabla \cdot f dx = \iint_S f \cdot \vec{n} dS.
$$

• Integration by parts

Let $D \subset \mathbb{R}^n$ be a bounded domian with a piecewise C^1 boundary surface S. Let $\vec{n} = (x^1, \dots, x^n)$ be the unit outward normal vector on S. Let $f(x), g(x)$ be any C^1 functions on $\overline{D} = D \cup S$. Then for $i = 1, \dots, n$

$$
\iiint_D \partial_{x_i} f(x)g(x)dx = \iint_S f(x)g(x)n^i dS - \iiint_D f(x)\partial_{x_i} g(x)dx.
$$

- Mixed derivatives are equal:
	- If a function $f(x, y)$ is of class C^2 , then $\partial_{xy} u = \partial_{yx} u$.

[∗]Any questions about the tutorial notes, please email me at rzhang@math.cuhk.edu.hk.

• Chain rule.

The Chain rule deals with functions of functions.

For example, consider the chain $s, t \mapsto x, y \mapsto u$. Suppose u is a function of x, y of class C^1 , and x, y are differential functions of s, t, then

$$
\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial u}{\partial y}\frac{\partial y}{\partial t}
$$

$$
\frac{\partial u}{\partial s} = \frac{\partial u}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial u}{\partial y}\frac{\partial y}{\partial s}.
$$

2. Use Characteristic Method to solve the following inhomogeneous PDE

$$
a(x, y)\partial_x u + b(x, y)\partial_y u = c(x, y)
$$

where $a(x, y), b(x, y), c(x, y)$ are smooth functions. Solution: The characteristic equation is

$$
\frac{dx}{a(x,y)} = \frac{dy}{b(x,y)}\tag{1}
$$

This is a 1-st order ODE. Suppose the solution is given by

$$
f(x,y)=C,
$$

or can be expressed explicitly by $y = y(x, C)$ with arbitrary constant C. Define $z(x, C) = u(x, y(x, C))$, then

$$
\frac{dz}{dx} = u_x + u_y \frac{dy}{dx} = u_x + \frac{b(x, y(x, C))}{a(x, y(x, C))} u_y = \frac{c(x, y(x, C))}{a(x, y(x, C))}
$$
(2)

which is a 1-st order linear ODE of z with respect to x by considering C as a parameter. The general solution to above ODE is given by

$$
z(x, C) = \int \frac{c(x, y(x, C))}{a(x, y(x, C))} dx + h(C)
$$

$$
= g(x, C) + h(C)
$$

where h is an arbitrary function. Then we obtain the general solution to PDE

$$
u(x, y) = g(x, f(x, y)) + h(f(x, y))
$$

where f, g are determined by the above two ODEs (1)(2), respectively, and h is an arbitrary function.