
Section 2. Uniqueness Theory

We study{
∂t u + ∂x f (u) = 0 x ∈ R1, t > 0 (4.1)

u(x , t = 0) = u0(x) (4.2)

where u(x , t) ∈ Rn, f (u) ∈ Rn, f ∈ C 3, u ∈ Ω.

A(u) = ∇u f (u) is an n × n matrix.

Strictly hyperbolic: the eigenvalues of A are simple, and

λ1(u) < λ2(u) < · · · < λn(u) for u ∈ Ω. (2.1)



The corresponding right and left eigenvectors are

γ1(u), · · · , γn(u); l1(u), · · · , ln(u).

More precisely, A(u) γi (u) = λi (u) γi (u), li (u)A(u) = λi (u) li (u).

Denote A(u, ũ) =

∫ 1

0
A(θu + (1− θ)ũ)dθ

and assume

λ1(u, ũ) < λ2(u, ũ) < · · · < λn(u, ũ) (2.2)

clearly lim
ũ→u

A(u, ũ) = A(u).



Corresponding right and left eigenvectors are

γ1(u, ũ), · · · , γn(u, ũ)

l1(u, ũ), · · · , ln(u, ũ)

Assume

|λi (u, ũ)| ≤ λ̄ ∀ u, ũ ∈ Ω. (2.3)

We will use the following notation

γi (u) · φ(u) = ∇φ(u) · γi (u) = lim
ε→0

φ(u + εγi (u))− φ(u)

ε
. (2.4)



Assumption

either γi (u) · λi (u) 6= 0 ∀ u ∈ Ω (2.5)

or γi (u) · λi (u) ≡ 0 ∀ u ∈ Ω (2.6)

In the case of (2.5), we normalize so that

γi (u)·λi (u) > 0, ∀ u ∈ Ω (2.5)′

Remark: If (2.5) is true, then the i-th characteristic field is
genuinely nonlinear, and if (2.6) is true, then the i-th characteristic
field is said to be linearly degenerate.

In gas dynamics, the two sound wave families are genuinely
nonlinear, the entropy wave family is linearly degenerate.



Shock Wave: A triple (u−, u+, S) is called a p-shock, if R-H
condition

s(u− − u+) = f (u+)− f (u−)

and the entropy condition (Lax condition)

λp(u+) < s < λp(u−)

u

u

x = s

−

+



Rarefaction Waves: Look for integral curve of the γi (u), which is{
u̇ = γi (u)
u(0) = ū

Denote this integral curve as exp{σγi}ū, σ is the parameter on the
integral curve.

This will yield rarefaction wave solution, by choosing σ = x
t .



Riemann Solution:
∂t u + ∂x f (u) = 0 (2.7)

u0(x) =

{
u− x < 0
u+ x > 0

(2.8)

Remark: (2.8) is dilation invariant

u0(αx) = u0(x) ∀ α > 0, x 6= 0.

The equation (2.7) is also dilation invariant, if u(x , t) solves (2.7),
then u(αx , αt), α > 0 also solves (2.7).

If one has uniqueness, then the solution must be self-similar.

u(x , t) = U
(x
t

)
.



Lax Theory:

If |u− − u+| � 1, ∃
u− = u0, u1, u2, · · · , un = u+

ui−1 is connected to ui by i-elementary wave (either an i-shock, or
an i-rarefaction wave, or an i-contact wave)

UR = UR
(x
t

)
Strength of the i-wave

εi = λi (ui )− λi (ui−1) if γi · λi (u) 6= 0
εi for ui = exp {εi γi}ui−1

if γi · λi (u) ≡ 0



Wave potential and interaction potential:

Definition 2.1: Let u : R1 → Ω ∈ Rn is a piecewise constant
function with bounded support having jupms at x1, · · · , xN .

Wave potential is defined to be

V (u) =
N∑
α=1

n∑
i=1

|εαi |

Interaction potential

Q(u) =
∑

((α,i),(β,j))∈A

|εαi ε
β
j |

εαi is the strength of the i-th elementary wave in Riemann solution
corresponding to the data (u(xα−), u(xα+)).



A (approaching pairs)
= {((α, i), (β, j))i either xα < xβ, i > j ,

or i = j , γi · λi 6= 0, min(εαi , ε
β
j ) < 0

}
Proposition 2.1: (Existence of approximate solution by front
tracking) There exist uniform constants C0, δ0 > 0 such that
u0 ∈ L1(R;Rn) is a piecewise constant with

V (u0) + C0 Q(u0) < δ0

Then ∀ ε > 0, ∃ an approximate solution u = u(x , t) to (2.7) such
that

u(x , t = 0) = u0(x) V (u(·, t)) + C0 Q(u(·, t)) < δ.



(1) The function u(x , t) is piecewise constant with discontinuities
occurring along finitely many polygonal lines in the (x , t)
plane.

There are two types of such lines:
Type I: {x = xα(t)}α=1,··· ,N .
Type II: {x = yβ(t)}β=1,··· ,N′ .

(2) Type I discontinuities: Except for finite many interaction

times, for α, the values u− = u(x−α , t), u+ = u(x+
α , t) are

either connected by a shock, in which case, it holds true that

f (u+)− f (u−) = ẋα(t)(u+ − u−)
ẋα(t) = λkα(u+, u−) (λkα(u+) < λkα(u−), entropy condition)



or else, the two states u−, u+ lie on the same integral curve of a
family of eigenvectors γkα , so that

ẋα(t) = λkα(u+) u+ = exp{εα γkα}u−

for some εα. If the kα-family is genuinely nonlinear, then, also
εα ∈ [0, ε].

Type II: All lines {x = yβ(t)} have same speed (constant)

ẏβ(t)− λ̄

The strength of all jumps occurring on these lines are uniformly
small

N′∑
β=1

|u(y+
β , t)− u(y−β , t)| < ε



Proposition 2.2: Let δ0 and C0 be the uniform constants in
Proposition 2.1. Set

D = closure
{
ν ∈ L1(R,Rn), ν is piecewise constants

}
V (ν) + C0 Q(ν) < δ0

the closure is in L1-topology.

Then ∀ u0 ∈ D, there exists a solution u = u(x , t) to the Cauchy
problem (2.7) - (2.8) such that u(·, t) ∈ D, ∀ t. Furthermore,
u = u(x , t) can be obtained as a limit of approximate solutions
constructed Proposition 2.1 by the front tracking method.



Remark: D is invariant for the solution operator if u0 ∈ D, then
u(·, t) ∈ D, ∀ t ≥ 0.

Sketch of proof of Proposition 2.2

If u0 ∈ D, then one can find uν0 ∈ D, uν0 piecewise constant. Then
Proposition 2.1 implies that uν(x , t) exists corresponding to the
initial data uν0 . Therefore uν(·, t) ∈ D, i.e.

V (uν(·, t)) + C0 Q(uν(·, t)) ≤ δ0.

Then
T .V .uν(·, t) ≤ δ0.

Helley principle implies uν(·, t)→ u(·, t) in L1.

Moreover, V (u(·, t)) + C0 Q(u(·, t)) ≤ δ0.



For the Cauchy problem{
ut + f (u)x = 0 u ∈ Rn

u(x , t = 0) = u0(x)

T .V .u0 ≤ δ0.

We have two theories:

Theory 1 (Glimm theory). ∃ u1(x , t) satisfies (2.7) in the sense of
distribution, also it satisfies entropy condition. u(x , t) is obtained
by the Glimm’s Random choice method.

Theory 2 (Front tracking method). ∃ u2(x , t) to (2.7) and (2.8)
generate by Proposition 2.2.

Is the Glimm solution unique? Does u1 equal to u2?


