Section 2. Uniqueness Theory

We study
Oru+0xf(u) = 0 xeRL t>0
u(x,t =0) = up(x)

where u(x,t) € R", f(u) €R", fe C3, ueqQ.
A(u) =V, f(u) is an n x n matrix.
Strictly hyperbolic: the eigenvalues of A are simple, and

A(u) < Aa(u) < -+ < Ap(u) for ue (2.1)



The corresponding right and left eigenvectors are

(), va(u); h(u), - ln(u)-

More precisely, A(u)vi(u) = Ai(u)vi(u), fi(u) A(u) = Ai(u) li(w).
Denote A(u, 7i) = /1 A(Bu + (1 — 0)i3)do
and assume °

M(u, 0) < Ap(u, ) < -+ < Ap(u, ) (2.2)

clearly lim A(u, &1) = A(u).

u—u



Corresponding right and left eigenvectors are

Assume

We will use the following notation

O{u+ (W) — o(u)

7i(u) - ¢(u) = V(u) - 7i(u) = lim

e—0 S



Assumption

either vi(u) - Ai(u) #0 VueQ (2.5
or ~i(u) - Ai(u) =0 VueQ (2
In the case of (2.5), we normalize so that
vi(u)-Ai(u) >0, VueQ (2.5)

Remark: If (2.5) is true, then the i-th characteristic field is
genuinely nonlinear, and if (2.6) is true, then the i-th characteristic
field is said to be linearly degenerate.

In gas dynamics, the two sound wave families are genuinely
nonlinear, the entropy wave family is linearly degenerate.



Shock Wave: A triple (u_, uy,S) is called a p-shock, if R-H
condition

S(u — us) = Fuy) — F(u)
and the entropy condition (Lax condition)
Mp(u1) < 5 < Ap(u)
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Rarefaction Waves: Look for integral curve of the v;(u), which is

Lo

Denote this integral curve as exp{o~;}z, o is the parameter on the
integral curve.

This will yield rarefaction wave solution, by choosing o = 7.



Riemann Solution:

Oru+ 0y f(u)y=0 (2.7)
o(x) ={ PN (2.8)

Remark: (2.8) is dilation invariant
up(ax) = up(x) Va>0, x#0.

The equation (2.7) is also dilation invariant, if u(x, t) solves (2.7),
then u(ax, at),a > 0 also solves (2.7).

If one has uniqueness, then the solution must be self-similar.

u(x,t)=U (%) .



Lax Theory:

If lu-—uy| <1, 3

u_ = ug,uy, U2, -+ ,Up = Uy

uj_1 is connected to u; by i-elementary wave (either an i-shock, or
an j-rarefaction wave, or an i-contact wave)

v )

Strength of the i-wave

ei = Ai(ui) — Ni(uj—1) if e Ai(w)
gi for ui=-exp{eini}, , if i - Aiu)

I~



Wave potential and interaction potential:

Definition 2.1: Let u: R! — Q € R" is a piecewise constant
function with bounded support having jupms at x1,--- , Xy.

Wave potential is defined to be

N n

V(e)=) > f

a=1 =1

Interaction potential

Quy= > el
((a,0),(B))EA

«

e is the strength of the i-th elementary wave in Riemann solution

corresponding to the data (u(xq—), u(xa+))-



A (approaching pairs)
= {((Oé, ’)a (ﬁﬂj))l either x, < X3, i>j,
or i=j, vi-\#0, min(e?‘,ef) < 0}
Proposition 2.1: (Existence of approximate solution by front

tracking) There exist uniform constants Cy, 0o > 0 such that
up € LY(R;R") is a piecewise constant with

V(up) + Co Q(up) < o

Then ¥ € > 0,3 an approximate solution u = u(x, t) to (2.7) such
that

u(x,t =0) = up(x) V(u(-, t)) + G Q(u(-, t)) <o.



(1) The function u(x,t) is piecewise constant with discontinuities
occurring along finitely many polygonal lines in the (x, t)
plane.

There are two types of such lines:
Type I: {x = xa(t)}a=1,--,N-
Type Il {x = y3(t)}5=1, A
(2) Type | discontinuities: Except for finite many interaction

times, for «, the values u™ = u(x; ,t), ut = u(x},t) are
either connected by a shock, in which case, it holds true that

Fu) = F(u™) = %a(t)(u" —u™)
Xa(t) = M, (ut,u7) (M, (ut) < Ak, (u™), entropy condition)



or else, the two states u™, u™ lie on the same integral curve of a
family of eigenvectors vy, so that

Xo(t) = )\ka(qu) ut = exp{ea Yk, fu~

for some g,. If the ky-family is genuinely nonlinear, then, also
£qa € [0,¢].

Type Il: All lines {x = y3(t)} have same speed (constant)

ya(t) — A

The strength of all jumps occurring on these lines are uniformly

small
N/

Z ]u(yg,t) - U()//ga t)| <e
B=1



Proposition 2.2: Let 69 and Cy be the uniform constants in
Proposition 2.1. Set

D = closure {V € LY(R,R"), v is piecewise constants}
V(V) + Go Q(I/) < o

the closure is in L'-topology.

Then ¥ ug € D, there exists a solution u = u(x, t) to the Cauchy
problem (2.7) - (2.8) such that u(-,t) € D, Vt. Furthermore,

u = u(x,t) can be obtained as a limit of approximate solutions
constructed Proposition 2.1 by the front tracking method.



Remark: D is invariant for the solution operator if ug € D, then
u(-,t) €D, YVt >0.

Sketch of proof of Proposition 2.2

If up € D, then one can find ug € D, ugy piecewise constant. Then
Proposition 2.1 implies that u”(x, t) exists corresponding to the
initial data ug. Therefore u”(-,t) € D, i.e.

V(" (- £) + Co Qu”( 1)) < .

Then
T.V.UV(-, t) < do.

Helley principle implies u” (-, t) — u(-, t) in LL.

Moreover, V(u(-,t)) + Co Q(u(:, t)) < do.



For the Cauchy problem

{ut—i-f(u)X:O ueRr”
u(x,t =0) = up(x)

T.V.UO S (50.
We have two theories:

Theory 1 (Glimm theory). 3 u1(x, t) satisfies (2.7) in the sense of
distribution, also it satisfies entropy condition. u(x, t) is obtained
by the Glimm’s Random choice method.

Theory 2 (Front tracking method). 3 us(x, t) to (2.7) and (2.8)
generate by Proposition 2.2.

Is the Glimm solution unique? Does u; equal to uy?



