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Suggested Solution to Assignment 5

Exercise 5.1

2. (a)
1 .%'2 1 1 T
A, = 2/ 22 sinmrz do = —2--— COSTTLﬂ'CE‘ + — cosmrmx dx
0 mm o mm
2(—1)m+t N 4(—1)" — 4
- omm m3ms
(b) 1 2 1
1 4 4
Ay = 2/ 2% cosmmadr = 2 sinmwx‘ — | L sinmrads = ()" —5—- O
0 mm 0 o mm mem

4. To find the Fourier series of the function f(x) = |sinz|, we first note that this is an even function so that
it has a cos-series. If we integrate from 0 to m and multiply the result by 2, we can take the function sinx

instead of |sin x| so that
2 /7r . 4

ag = — sinzxdr = —.
0 ™

- =

2 [T —4 _ neven
an = / sinz cosnadr = { =797 .

™ Jo 0 nodd

Hence, we have

(@) 2 4(cos2x+cos4x+cos6x )

) =2_=

T wm22—-1 42-1 62-1

Substituting z = 0 and x = 7, we have

n=1
5. (a) From Page.109, we have
o0

21 MmrT

—_ -1 m+1 <" e
o mzl( ) mm l
Integration of both sides gives
212 MmnT

2 o
T
—=c+ -nm cos ——
2 Z( ) m2n2 l
m=1
The constant of the integration is the missing coefficient

2 1)y 27 6

(b) By setting x = 0 gives

R — 212

J— m

0= 6 + Z(_l) m2n2’
m=1
or .

2 _1ym+1
oy D™
12 m?2

m=1
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8. The key point in the problem above is to solve the following PDE problem.

up — uge =0, u(x,0)=¢(x), u(0,t)=u(l,t)=0,

d)(x):{g, O<x<%,'

3 — 3z, %<x<1

Through a standard procedure of separation variable method, we obtain

—n2r?t .
u(zx,t) = g ane” ™™ tsinnmz,

where a,, = 2 fol o(x) sinnrrdr = n297r2 sin 22, so the solution 7' = u(z,t) + . O

9. From Section 4.2.7, we see that the general formula to wave equation with Neu- mann boundary condition
is

1 oo
u(zx,t) = §(A0 + Bot) + Z(An cosnct + By, sinnet) cos nz,
n=1
where
1 > 1 o0
P(x) = 5140 + Z Apcosnz, ()= §BO + Z ncB,, cos nx.

n=1 n=1

By further calculation, we have By = 1, By = ﬁ and the other coefficients are all zero. Hence, the solution

is
1 sin 2c¢t cos 2x

u(zx,t) = Et + 1 O

Exercise 5.2

2. Suppose a = p/q, where p, q are co-prime to each other. Then is is not difficult to see that S = 2¢r is a
period of the function. Suppose 2gm = mT', where T is the minimal period. Then

cosx + cos ax = cos(x + 1) + cos(ax + oT).

Let z = 0, we have the above equality holds iff ¢/m, p/m are both integers. Therefore, m = 1. Hence, we
finish the problem. O

5. Let ay, = %fol ¢(z) sin ™=, Then we have

mmnx

() = W;am sin l O

8. (a) If f is even, f(—x) = f(x). Differentiating both sides gives —f'(—z) = f'(z), so f'(—x) = — f'(x),
showing f’ is odd. If f is odd, f(—xz) = —f(x). Differentiating both sides gives —f'(—xz) = —f(x),
so f'(—x) = f'(x), showing f’ is even.

(b) If f is even, consider [ f(—xz)dz = [ f(z)dz. Via substitution, v = —=z, we have — [ f(u)du =
J f(z)dz. So if ignoring te constant of integration, F'(—z) = —F(z), showing F' is odd, where F
is an antiderivative of f.Similarly, for f odd, we have [ f(—z)dx = —f(z)dz, so F(—z) = F(z),
showing F' is even. 0

10. (a) If ¢ is continuos on (0,1), ¢odq is continuous on (—I,!) if and only if lim+ ¢(z) =0.
z—0

(b) If ¢(z) is differentiable on (0,1), ¢oaq is differentiable on (—I,1) if and only if lim+ ¢ (x) exists, since
z—0

! 4q is an even function, so the only thing to avoid is an infinite discontinuity at z = 0.
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(c) If ¢ is continuos on (0,1), Geven is continuous on (—I,1) if and only if 111%1+ ¢(x) exists, since the only
z—
thing to avoid is an infinite discontinuity at = 0.
(d) If ¢(z) is differentiable on (0,1), @even is differentiable on (—I,[) if and only if lim+ ¢'(x) =0, since
z—0

! ven 18 an odd function. O

Extra. w(0,t) = u(1,t) = 0 tells us we can do odd extension and periodic extension with period 2. Thus
define

o(z) = { sin?(mz), € [2n,2n + 1]

—sin®(rz), x € [2n—1,2n]

w(x)_{x(l—@, x € [2n,2n + 1]

z(1+2x), =z€[2n—1,2n]

n=0,+1,+2,.... By d’Alembert’s formula,u(x,t) = %[qb(x +2t) + ¢p(x — 2t)] + fx“t s)ds solves
the problem.

Exercise 5.3

3. Since X(0) = 0, by the odd extension z(—z) = —X(z) for — < z < 0, then X satisfies X" + A\X =0,
X'(=1) = X'(I) = 0. Hence,

A=[(n+ %)WP/F, X (x) = sin[(n + %)m/u, n=0,1,2,...

Thus we botain the general formula to this equation

+ g)mct + 5)mct 41
U(IE, t) = Z[An cos m + Bn sin (n 2)7TC ]Sin (n 2)7rac
n=0
1
By the boundry condition, we obtained that B, are all zero, while A, = % f(f gin (n+12)m Cw de —
(_1)71 (n+§l)2ﬂ_2 .

5(a). Let u(z,t) = X (x)T'(t), then
X"(z) = AX(2),

X(0) =0, X'(l) =0.

By Theorem 3, there is no negative eigenvalue. It is easy to check that 0 is not an eigenvalue. Hence,
there are only positive eigenvalues.
Let A = 3%, B3 > 0, then we have

X (x) = Acos fx + Bsin fz.

Hence the bounndary condtions imply

A=0, BBcospl=0.

41
8= (nl?)ﬂ n=0,1,2,...
So the eigenfunctions are
(n+ 3)mx
Xp(x) = sin ,n=0,1,2,... d
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6. Let X'(z) = AX (z), A € C, then

12.

13.

X(z) =M.
By the boundary condition X (0) = X (1), we have
et =1.

Hence,
An = 2nmi, X, (z) = e*™ n e Z.

/ X

Since, if m # n,

1
x)dx = / e2(n=—m)mzig, 0,
0

Therefore, the eigenfunctions are orthogonal on the interval (0, 1). U
If
Xi(a) — agX1(a) = X4(a) — ag Xa(a) =
and
X1(b) + ap X1 (b) = X5(b) + apXa(b) =0,
then
(X1 X2 + X1 X3)[2 = —X1(0)Xa(b) + X1(b)X5(b) + X1(a)X2(a) — X1(a)X5(a)

= ale(b)Xg(b) — Xl(b)ang(b) + aaXl(a)Xg(a) — Xl(a)aan(a) =0. ]

. For j = 1,2, suppose that

X;(b) = aX;(a) + Xj(a)
X4(b) = vX;(a) + 6X}(a).

Then,
(X1 X2 — X1 X5)|; = X7 (b) Xa(b) — X1(b)X3(b) — X{(a) X2(a) + Xi1(a)Xs(a)
— [yX1(a) + 0} (a))[aXs(a) + BX3(a)
— [0 X1(a) + BX}(a)][y Xa(a) + X5 (a)] — X} (a) Xa(a) + X1(a) Xa(a)
— (a6 — By — 1)X}(a) Xa(a) + (1 + By — ad) X1 (a) X} (a)
= (ad — By — 1)(X1.X2) |a=a-
Therefore, the boundary conditions are symetric if and only if ad — By = 1. (Il

By the divergence theorem,

ol = / (' @)g(a))'dar = / 7"(@)g(w) + 1 (@) (@),
/f” /f Do+ fgl O
Substitute f(z) = X (x) = g(x) in the Green’s first identity, we have
/ X"z _ / X7(z)dz + (X'X)[2 < 0.

Since — X" = \X, so
b
—)\/ X%(z)dx < 0.

Therefore, we get A > 0 since X # 0. O
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Exercise 5.4
1. The partial sum is given by
1—(—1)"a?"
o 1=
14 a2
(a) Obviously for any xg fixed, S,, — ﬁ Thus it converges to ﬁ pointwise.
(b) Let z, =1 — L, then 2" — e~2. Thus it does not converge uniformly.
¢) Tt will converge to S(z) = —L5 in the L? sence since
1+

1 an

1 , "
/I\Sn—S al:c:/1 7(1—#332)26&

1
< / 2" dx
1

<

4n+1%0 asn — oo. O
2. This is an easy consequence combined Theorem 2 and Theorem 3 on Page 124 and Theorem 4 on Page

125. ]
3. (a) For any fixed point zo, WLOG, we assume zy < % Then there is Ny such that for n > Ny,

< 1 1
Ta < — — =
0 2 ’I’L’
which implies that f,,(xg) = 0. Thus f,(x) — 0 pointwisely.
(b) Let z, = & — 1 then f,(x,) = =y, — —oo, which implies that the convergence is not uniform.

2 n
(c) By direct computation, we have

1

[ i@z = [

2

+ 272

2

N|=
S

3=

For fyn:n%,
/f,%(:v)dszn_é—)O as n — 00.

(d) By the computation in (c), for v, = n,

/f,%(x)dx:%z—)oo asn — 0o. O

4. For odd n,
ithe 92
/ Pde = = —0.
1 n
4 p2
For even n,
itz 9
/ Pde = = —0.
3_ 1 n
1 n2
Thus, for any n,
2
Hgn(ac)H%Q =3 —+0 as n — oo. 0
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5. (a) We see that Ay = %ff dr = 4 and A, = %f;’ cos rdr = —i sin . So, the first four nonzero
terms are %, —¥3 cos 72 —ﬁ cos 27 and ‘[ cos 47?:""3.

37 pL 3 ’ 2 3
(b) We can express ¢(z) = AO + > e i (Ay cos 22 + By, sin 2Z%). by Theorem 4 of Sectiion 4, since ¢(z)
and its derivative is plecew1se continuous, so we get the fourier series will converge to f(x) except at
x = 1, while the value of this series at x = 1 is %
(c) By corollary 7, we see that it converge to ¢(z) in L? sense.

m

. . . . 3 2 3 —1 (3] (
(d) Putz = 0, we see that the sine series vanish, it turns out to be that ¢(0) = g—% D 1<m<oom£3n % cos "3
thus we obtain the sum of thee series is 2% U
3v3
6. The series is cosz =Y 7 | apsinnz. If n > 1,
2 [T 1 cos(n+1 cos(n — Dz =  2n(1+ (—1)"
an:/ coszsinnrdr = ——| (n+ e + ( ) ] :M.
T Jo T n+1 n—1 0 (n? —1)m
If n =1, a; = 0. The sum series is 0 if x = —7,0, 7. By Theorem 4 in Section 4, the sum series converges
to cosx pointwisely in 0 < z < m, and to —cosx for —7m < x < 0. O

7. (a) Obviously ¢(x) is odd. Thus, its full Fourier series is just the Sine Fourier series, i.e.

o
E B, sinnmx,
n=1

where B,, satisfies

1
2
B, = / o(x) sinnreder = —.

1 nm
(b) By (a), the first three nonzero terms are

2 . 1. .
—sin7wr, —sin27x, — sin 3mx.
T s 3

1 1
2)[2dx = — 2)3%dx
/1|¢>< ) 2/()(1 Vda < 2,

it cconverges in the mean square sense according to Corollary 7.

(c) Since

(d) Since ¢(x) is continuous on (—1,1) except at the point = 0. Therefore, Theorem 4 in Section 4
implies it converges pointwisely on (—1,1) expect at = 0.

(e) Since the series does not converge pointwisely, it does not converge uniformly.

Exercise 5.6

1. (a) (Use the method of shifting the data.)
Let v(zx,t) := u(z,t) — 1, then v solves

V¢ = Vg, 02(0,1) = v(1,t) =0, andv(z,0) = 2% — 1.
By the method of seperation of variables, we have

- 1
t) = Z A, e (nt3)*m%t cos[(n + 5)7736],

n=0
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where ]
Ap = (1) 4 (n + 5)7?’%*3.

Hence,

- 1
u(z,t) =1+ Z A, e~ (nt3)*m%t cos|(n + 5)7@],

n=0
where A,, is as before.

(b) 1. O
2. In the case j(t) = 0 and h(t) = €', by (10) and the initial condition wu,(0) = 0,

N 2n7['k t “Ankt
w) = Groe© —e )
Therefore,
> 2nmk nwTL
t) = t Ankt 0
u(x,t) 321 Ok £ 1) (e —e ) sin -
5. It is easy to check that etsi7n5aj solves
QLI ey 14252 0
vt = ugy + €l sin bz, and v(0,t) = v(m,t) = 0.

Using the method of shifting the data, we have

t .. 5 o
u(z,t) = % + nz_:l(An cos(nct) + By, sin(nct)) sin(nx),
where
1
2 [T 1 s n=5
An:—/ ———— sinbzsinnr dr = 1+25¢2 :
7 Jo 1+25¢c 5 otherwise
2 ™
B, = ner Jo [sin 3z — T 2582 sin 5z| sinnz dx
i n=3
1
- = n=5
5e(1+25¢2)
0 otherwise

So the formula of the solution can be simplfied as

1 1 1
u(z,t) = 3 sin 3¢t sin 3z + 1T 2582 (et — cos bet — e sin 5ct) sin bz. O

8. (Expansion Method) Let
= nwx

u(w,t) = Z up () sin WA

n=1

ou . nmx
Lty =3 vty sin "7,
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Then
— sm me der = dun
odt’
82 nwx du,,
W)= 2 [ D i T gy = D
walt) =7 | gz sin—de ==
2 [t 2 !
— _l/o (nlﬂ) u(x,t) sm—l dx—i— l(ugcsin—mlm — ?ucos—mlm) .

= —\un(t) — 2nml 2 (—1)" At,

where )\, = (nm/l)%. Here we used the Green’s second identity and the boundary conditions. Hence, by
the PDE u; = kuy, and the initial condition u(x,0) = 0, we get

duy, =
E = b= Anun(t) — 202 (=1)" A1),
un(O) =0.
Hence,
. , 1 o—Ankt
un(t) = (=1)""2n7l” A[rn Tk T Tk B
Therefore,
o —Ankt
t 1 e n nmwx
o n+1 -2 i
u(et) =) (=)™ 2nml 2 Al= g T e s

l )

n=1

where )\, = (nm/l)2.



