
Chapter 3. Systems of
Hyperbolic Conservation Laws
and Glimm Scheme

§3.1 Introduction
We consider a general system of n equations in one space
dimension{

ut + f (u)x = 0, x ∈ R, t > 0, u ∈ Rn, f ∈ Rn, f ∈ C 2

u(x , t = 0) = u0(x)
(3.1)



In this chapter, we will discuss the following five main topics:

I Riemann problem for systems of conservation laws (P. Lax)

I Wave interaction estimates

I Glimm Scheme and Glimm’s functional

I Convergence of Glimm’s method (Random choice method)

I Uniqueness of Glimm’s solution (A. Bressen)

Glimm scheme is very important in solving the Cauchy problem. It
provides a new idea and a new approach to the nonlinear partial
differential equations.



In solving the Riemann problems for scalar case, we obtain two
kinds of basic nonlinear waves, shock waves and centered
rarefaction waves. But how can we adopt these basic waves into
systems? Lax and Glimm observed that Riemann problem is not
only important for scalar conservation laws, but also for systems,
and they provide the building blocks for systems of conservation
laws.

Before we go to the main parts, we introduce some general
concepts of conservation laws.



Definition 3.1 The system (3.1) is called hyperbolic if
(∇uf (u))n×n has only real eigenvalues, namely
λ1(u) ≤ · · · · · · ≤ λn(u). It is called strictly hyperbolic if all
eigenvalues are distinct, i.e. λ1(u) < · · · · · · < λn(u).

Nonstrictly hyperbolic cases arise from some material science and
they are much complicated than the strictly hyperbolic cases, also
the Glimm scheme does not work very well there. From now on,
we will assume (3.1) is always strictly hyperbolic. Then we can
find the corresponding right and left eigenvectors



r1(u), r2(u), · · · , rn(u),

l1(u), l2(u), · · · , ln(u),

∇f (u) · ri (u) = λi (u) ri (u) and li (u) · ∇f (u) = λi (u) li (u).

And we denote by R(u) = (r1(u), · · · , rn(u)) the n × n matrix of
right eigenvectors, L(u) = (l1(u), · · · , ln(u))t the n × n matrix of
left eigenvectors. We normalize those eigenvectors such that

L(u) · ∇f (u) · R(u) = Λ(u) = diag {λ1(u), · · · · · · , λn(u)}

and

L(u) · R(u) = In×n.



The concept of characteristic fields are very important. Consider,
for example, the movement of a elastic string, which is modelled
by the second order hyperbolic wave equation. And we know the
sound wave propagates in two different directions. On each
characteristic direction, it acts like the solution to the scalar
equation. This reminds us that we can decompose the problem
into simpler one by characteristic field. For each field, Lax propose
the following concept.



Definition 3.2 The i-th characteristic field is genuinely nonlinear if

∇λi (u) · ri (u) 6= 0, for all u εΩ ⊂ Rn.

Otherwise, if ∇λi (u) · ri (u) = 0 for all u εΩ ⊂ Rn, then the
i-th characteristic field is said to be linearly degenerate.

Example 1 n = 1. Then f
′
(u) is a scalar, and

λ1(u) = f
′
(u), r1 = 1. Hence ∂u λ1(u) = f

′′
(u). Then when f is

convex, it is genuinely nonlinear, and when f (u) = λu + c (λ, c are
constants), f

′′
(u) ≡ 0, it is linearly degenerate.



Example 2 p-system:

{
∂t v − ∂x u = 0
∂t u + ∂x p(v) = 0, t > 0, x εR,

(3.2)

where p
′
< 0, p

′′
> 0. Here we let

U = (v , u), F (U) = (−u, p(v)),

then (3.2) can be written as

Ut + F (U)x = 0,

and the Jacobian matrix is

dF =

(
0 −1

p
′
(v) 0

)



it has real and distinct eigenvalues

λ1 = −
√
−p′(v) < 0 <

√
−p′(v) = λ2.

The right eigenvector corresponding to, say λ2, is

r2 =
(
−1,

√
−p′(v)

)t
.

Then

∇λ2 · r2 =

(
−p′′(v)

2
√
−p′(v)

, 0

)
·
(
−1,

√
−p′(v)

)t

=
p
′′

(v)

2
√
−p′(v)

> 0.

Hence the second characteristic family is genuinely nonlinear. And
in a similar way, the first family is also genuinely nonlinear.



Example 3 Consider the full gas dynamics system in Eulerian
coordinates

ρt + (ρ u)x = 0,
ut + u ux + px/ρ = 0,
st + u sx = 0,

 ρ
u
s

 =

 density
velocity
entropy

 ,

where p = p(ρ, s), pρ > 0. We denote the sound speed c by
c =
√
pρ. The matrix u ρ 0

pρ/ρ u ps/ρ
0 0 u


has eigenvalues λ1 = u − c , λ2 = u, λ3 = u + c , with
corresponding right eigenvectors
r1 = (ρ,−c , 0)t , r2 = (ps , 0,−pρ)t , and r3 = (ρ, c , 0)t .



Now we see that

∇λ1 · r1 = (−cρ, 1,−cs) · (ρ,−c , 0)t = −ρ cρ − c 6= 0,
∇λ2 · r2 = (0, 1, 0) · (ps , 0,−pρ)t = 0,
∇λ3 · r3 = (cρ, 1, cs) · (ρ, c , 0)t = ρ cρ + c 6= 0.

Thus λ1 < λ2 < λ3 and λ1 &λ3 are genuinely nonlinear, λ2 is
linearly degenerate. The 2-nd family is the so-called entropy wave
family.

Now we want to give definition of three elementary waves, namely,
shock waves, centered rarefaction waves and contact discontinuity
(also called vortex sheets).



Definition 3.3 (Shock waves) The triple (ul , ur , s) is called a
p-shock if

(1) (Rankine−Hugoniot condition) s(ul − ur ) = f (ul)− f (ur ),
(2) (Lax entropy condition) λp(ur ) < s < λp(ul),

λp−1(ul) < s < λp+1(ur ).

Remark 1: Condition (2) implies that if we define the i-th
characteristic curve by

dxi (t)

dt
= λi (u(xi (t), t)),

then there are (n + 1) characteristic curves run into the shock and
(n − 1) ones run away from it.



Example 4 n = 1. Suppose the shock is x = st + x0, then the
characteristic curves starting from x1, x2, which lies on the left and
right hand side of the shock must run into the shock and no one
leaves. See Figure 3.1.

n = 2. Consider the 1-shock x = st + x0. Then the 1-characteristic
curves starting from x1, x2 must run into the shock. Then it
follows from the nonstrict hyperbolicity that the 2-characteristic
curve starting from x1 no way but run into the shock and then
leaves it, and the 2-characteristic curve starting from x2 must not
run into the shock. See Figure 3.2.



Remark 2: Exactly as same as for n = 1, the Lax entropy
conditions are the necessary and sufficient conditions for structural
stability of the shock wave. That is, the jump continuity will
persist under small perturbation, see A. Majda book for detail.

Definition 3.4 (Centered Rarefaction Waves) A function of the
form u = u( xt ), which is Lipschitz continuous for t > 0, is called
p-centered rarefaction wave if

(1) ∂t u + ∂x f (u) = 0, t > 0;

(2) λp
(
u
(
x
t

))
= x

t , λp (u−) ≤ x
t ≤ λp (u+).



In other words,

u
(x
t

)
=


u−,

x
t ≤ λp (u−),

u( xt ), λp (u−) ≤ x
t ≤ λp (u+),

u+
x
t ≥ λp (u+).

See Figure 3.3.

Remark: Clearly, if p-centered rarefaction wave exists, then
λp(u−) ≤ λp(u+).



Definition 3.5 (Contact Discontinuity or Vortex sheets) A triple
(u−, u+, s) is called p-contact discontinuity if

(1) s(u+ − u−) = f (u+)− f (u−),

(2) λp (u−) = λp (u+) = s.

Remark 1: p-characteristic field has to be linearly degenerate to
admit a contact discontinuity. See figure 3.4.

Remark 2: In view of computation, shock wave is easy to be
observed since it has structural stability; while contact
discontinuity is hard to be dealt with.



In the following, our basic assumptions are:

A. (3.1) is strictly hyperbolic;

B. Each characteristic field of (3.1) is either genuinely nonlinear
or linearly degenerate.

As first step, our goal is to solve the Riemann problem for (3.1)
with the following special initial data.

u(x , t = 0) = uR (x) =

{
u−, x < 0,
u+, x > 0.

(3.3)

Here u± are constant states.



Remark 1: Problem (3.1), (3.3) is called the Riemann problem
just because Riemann originally studied the following problem in
gas dynamics, which is also called shock tube problem.
Consider a long, thin, cylindrical tube containing a gas separated
by a thin membrane. Let (ul , ρl , pl) and (ur , ρr , pr ) denote the
velocity, density and pressure on both sides of the membrane.
Suppose at initial time, ul = ur = 0, ρl > ρr , pl > pr are all
constants (see Figure 3.5). The problem Riemann considered is to
determine the motion of the gas after breaking the membrane at
the initial time. (See Smoller’s book)



Remark 2: The importance of the Riemann Problem is that the
solutions to the Riemann Problem are scattering states both locally
and globally for general solutions of (3.1).

To solve the Riemann problem (3.1), (3.3), we will use so-called
wave curves to cover the state space Ω ⊂ Rn. That is, given the
left state u−, we will look for all possible state u, which can be
connected to u− by either a shock wave, or a centered rarefaction
wave, or a contact discontinuity.



Proposition 3.1 (Shock wave curve)
For fixed u0 εR

n, the R-H relations s(u− u0) = f (u)− f (u0) define
n-smooth curves (u, s) = (uk(ε), sk(ε)) for
|ε| ≤ ak , (k = 1, 2, · · · , n), ak > 0, such that

(1) uk(0) = u0, sk (ε = 0) = λk(u0);

(2) u̇(0) = d
dε uk(ε)|ε=0 = rk(u0), ü(0) = d2

dε2 uk(ε)|ε=0 = ṙk =
∇ rk(u0) · rk(u0);

(3) k-family is genuinely nonlinear and we normalize it so that

∇λk (u0) · rk (u0) ≡ 1.

Then

ṡk (0) =
d

dε
sk

∣∣∣∣ε=0 =
1

2

λk (uk (ε)) < sk (ε) < λk (u0) iff ε < 0.



Proof
Step 1. Existence
Consider

s(u − u0) = f (u)− f (u0) = g(u, u0) (u − u0), (3.4)

where g(u, u0) =
∫ 1

0 f
′
(u0 + θ (u − u0)) dθ. Clearly,

limu→u0 g(u, u0) = ∇ f (u0) ≡ A (u0) and g(u, u0) is a smooth
n × n matrix. By the assumption, A (u0) has n real distinct
eigenvalues. Thus when u is close to u0, g(u, u0) must have n real
distinct eigenvalues λ̄k(u, u0) with corresponding right (left)
eigenvector r̄k(u) (̄lk (u)).



Then (3.4) is equivalent to

(g(u, u0)− sI ) (u − u0) = 0.

So R-H condition is satisfied if and only if there exists
k , k = 1, 2, · · · , n, such that s = λ̄k(u) and u − u0 ‖ r̄k(u), which
implies

l̄i (u) · (u − u0) = 0, i 6= k.

That is, u must satisfies

Φ (u) ≡ L̃(u) · (u − u0) = 0,

where

L̃(u) = (̄l1(u), · · · , l̄k−1(u), l̄k+1(u), · · · , l̄n(u))
t
.



Clearly, Φ(u0) = 0, d Φ(u0) = L̃(u0) has rank n − 1. So by
implicit function theorem, there exists a real number ε such that
u = uk(ε) defined in a small neighborhood |ε| < ak(0 < ak � 1)
such that

uk(0) = u0, Φ(uk(ε)) ≡ 0

and
uk(ε)− u(0) ‖ r̄k(u).

We define s = sk(ε) = λ̄k(uk(ε)).



Step 2. Properties of the shock locus
By step 1, we have

sk(ε)(uk(ε)− u0) = (f (uk(ε))− f (u0)). (3.5)

By definition of the right eigenvalue, we also have

∇f (uk(ε)) rk(uk(ε)) = λk (uk(ε)) rk(uk(ε)). (3.6)

From (3.5), one has

ṡk (uk − u0) + sk u̇k = f
′
(uk) u̇k , (3.7)

s̈k (uk − u0) + 2 ṡk u̇k + sk ük

= ∇2 f (uk) (u̇k , u̇k) + f
′
(uk) ük (3.8)



From (ref3.6), one has

∇2 f (uk) (u̇k , rk) + f
′
(uk) ṙk = (∇λk(uk)u̇k) rk (uk) + λk (uk) ṙk .

(3.9)
Here we omit the parameter ε for simplicity. Recall that if
f = (f1, f2, · · · , fn), fi = fi (u), and H(fi ) denotes the Hessian
matrix of fi , then ∇2f (ri , ri ) is the column vector defined by

∇2f (ri , ri ) =


r ti H(f1) ri
r ti H(f2) ri

...
r ti H(fn) ri

 .



Notation f
′

means the gradient of f , also denoted by ∇ f .
Set ε = 0 in (3.6) and (3.7), note that uk(0) = u0, it yields

(f
′
(u0)− λk(u0)I ) rk(u0) = 0,

and
(f
′
(u0)− sk(0)I ) u̇k(0) = 0.

Therefore, after normalizing, we get

sk(0) = λk(u0), u̇k(0) = rk(u0). (3.10)

Then, set ε = 0 in (3.8) and use (3.10) to give

2 ṡk(0)rk(u0)+λk(u0) ük(0) = ∇2 f (u0) (rk(u0), rk(u0))+f
′
(u0) ük(0).

(3.11)



Applying lk(u0) on both hand side of above equation, one has

2 ṡk(0) lk(u0) rk(u0) + λk(u0) lk(u0) ük(0)

= lk(u0)∇2 f (u0) (rk(u0), rk(u0)) + λk(u0) lk(u0) ük(0).

That is,
2 ṡk(0) = lk(u0)∇2 f (u0) (rk(u0), rk(u0)). (3.12)

Noting that
∇ f (uk) rk(uk) = λk (uk) rk (uk),

one has

∇2 f (uk) (u̇k , rk(uk)) +∇ f (uk) ṙk(uk)

= ∇λk (uk) · u̇k rk(uk) + λk (uk) ṙk (uk).



So

lk(u0) · ∇2f (u0)(rk(u0), rk(u0)) = lk(u0) · ∇λk(u0) · rk(u0) rk(u0)

and
lk(u0)∇2f (u0)(rk(u0), rk(u0)) = ∇λk(u0) · rk(u0).

By our assumptions, k-family is genuinely nonlinear, and

∇λk(u0) · rk(u0) = 1

Therefore, it deduces from (3.12) that

2 ṡk(0) = ∇λk(u0) · rk(u0) = 1,
ṡk(0) = 1

2 .



Then, the equation (3.11) becomes

rk(u0) + λk(u0) ük(0) = ∇2 f (u0) (rk(u0), rk(u0)) + f
′
(u0) ük(0).

(3.13)
On the other hand, from (3.6), we have

∇2 f (u0) (rk(u0), rk(u0)) + f
′
(u0) ṙk(u0)

= (∇λk(u0) · rk(u0)) rk(u0) + λk(u0) · ṙk(u0).

which is

∇2 f (u0) (rk(u0), rk(u0)) + f
′
(u0) ṙk(u0) = rk(u0) + λk(u0) · ṙk(u0).

(3.14)
From (3.13), (3.14), it reduces

∇f (u0) (ük − ṙk) = λk(u0) (ük − ṙk).



Therefore,
ük − ṙk ‖ rk(u0),

ük = ṙk + c rk(u0),

where c is a constant. After reparameterizing the curve again, we
get

ük = ṙk .

Until now, we have gotten n-smooth curves (uk(ε), sk(ε)) for
|ε| < ak satisfying properties (1), (2) of the proposition, and

ṡk(0) =
1

2
.

In the following, we will prove the entropy conditions as stated in
(3) of the proposition.



Step 3. Entropy condition
Set Φ(ε) = sk(ε)− λk(u0).
Then Φ(0) = 0.

Φ̇(ε)|ε=0 = ṡk(ε)|ε=0 =
1

2

Consequently, one has
Φ(ε) < 0

if and only if ε < 0.
Now set ψ(ε) = λk(uk(ε))− sk(ε). Then, clearly,

ψ(0) = 0

ψ̇(ε)|ε=0 = ∇λk(uk(ε)) u̇k |ε=0 − ṡk |ε=0 = 1− 1
2 = 1

2 .

So ψ(ε) < 0 if and only if ε < 0.



Thus, we have obtained

λk(uk(ε)) < sk(ε) < λk(u0)

if and only if ε < 0, as required by our proposition.

So far, for fixed u0 εR
n, we have constructed n-smooth curves

(uk(ε), sk(ε)) connecting u0 in the neighborhood of u0, and
satisfying entropy conditions for ε < 0. This is called shock curve
connecting u0. The following is about rarefaction wave curve
connecting u0 in the neighborhood of u0.



Define uRk (ε) to be the vector field associated with rk(u), i.e.{
d
dεu

R
k (ε) = rk

(
uRk (ε)

)
,

uRk (ε = 0) = u0.

The local existence of uRk (ε) on ε is clear. The we have



Proposition 3.2 (Rarefaction Wave Curve)

(1) If k-characteristic field is genuinely nonlinear, define

uRk

(x
t

)
=


u0,

x
t ≤ λk(u0),

uRk
(
x
t − λk(u0)

)
, λk(u0) ≤ x

t ≤ λk(u0) + ε̃,
uRk (ε̃), x

t ≥ λk(u0) + ε̃.

where 0 < ε̃� 1. Then uRk is the k - centered rarefaction
wave connecting u0 to uRk (ε̃);



(2) If k-characteristic field is linearly degenerate, define

uR
(x
t

)
=

{
u0,

x
t < λk(u0),

uRk (ε), x
t > λk(u0).

Then uR
(
x
t

)
gives the k-contact discontinuity connecting u0

to uRk (ε).



Proof

(1) Let ε = x
t − λk(u0). Then we have

d

dε
λk

(
uRk (ε)

)
= ∇λk

(
uRk (ε)

)
· d
dε

uRk (ε)

= ∇λk
(
uRk (ε)

)
· rk
(
uRk (ε)

)
≡ 1

so

λk

(
uRk (ε)

)
= λk

(
uRk (0)

)
+ ε = λk(u0) +

x

t
− λk(u0)

=
x

t
.



Denote u(x , t) = uRk
(
x
t − λk(u0)

)
. Then

∂t u + ∂x f (u) =
d

dε
uRk

(
− x

t2

)
+ f

′
(
uRk

)
· d
dε

uRk ·
1

t

= − x

t2
rk

(
uRk (ε)

)
+

1

t
f
′
(
uRk

)
· rk
(
uRk (ε)

)
= − x

t2
rk

(
uRk (ε)

)
+

1

t
λk

(
uRk (ε)

)
rk

(
uRk (ε)

)
= 0.

Therefore uRk is the k-centered rarefaction wave.



(2) By definition, we need to prove

λk(u0) = λk

(
uRk (ε)

)
(3.15)

and

λk(u0)
(
uRk (ε)− u0

)
= f

(
uRk (ε)

)
− f (u0). (3.16)

Since k-characteristic field is linearly degenerate, one has

d

dε

(
λk(u0)− λk(uRk (ε))

)
= −∇λk

(
uRk (ε)

) d

dε
uRk (ε)

= −∇λk
(
uRk (ε)

)
· rk
(
uRk (ε)

)
≡ 0.



Therefore,

λk(u0)− λk
(
uRk (ε)

)
= λk(u0)− λk

(
uRk (ε = 0)

)
≡ 0. (3.17)

This is (3.15).

Set Φ(ε) = λk(u0)
(
uRk (ε)− u0

)
−
(
f (uRk (ε))− f (u0)

)
.

Then

d
dεΦ(ε) = λk(u0) d

dε u
R
k (ε)−∇f

(
uRk (ε)

)
d
dε u

R
k (ε)

=
(
λk(u0)− λk(uRk (ε))

)
rk
(
uRk (ε)

)
= 0 by (3.17).



Noticing that
Φ(0) = 0.

we obtain Φ(ε) ≡ 0, which is (3.16).

Now for fixed u0 εΩ, we can find a neighborhood N of u0 in Ω so
that there is a shock wave curve uSk (ε) through u0 in N satisfying
the Lax entropy condition on ε < 0, and a rarefaction wave curve
uRk (ε) going through u0 in N, provided that each characteristic
field is either genuinely nonlinear or linearly degenerate. We define
a k-wave curve by combining one sided branches of wave curves.



Definition 3.6 (Wave curve) A k-wave curve through u0 is a C 2,1

curve T k(ε)u0 defined to be

(1) If k-field is genuinely nonlinear,

u = T k(ε)u0 = Tk(ε, u0) =


uSk (ε), ε ≤ 0

uRk (ε), ε > 0

(2) If k-field is linearly degenerate, u = T k(ε)u0 = uCk (ε), where
uCk denotes the k-contact discontinuity wave.

We show that we can connect two nearby states by combination of
k-wave curves. The theorem is stated as follows.



Theorem 3.1 (Lax) Let the system is strictly hyperbolic, and each
field is either genuinely nonlinear or linearly degenerate on a region
Ω ⊂ Rn. Assume u− εΩ. Then there is a small neighborhood N of
u− εΩ such that for any u+ εN, the Riemann problem

∂t u + ∂x f (u) = 0

u(x , t = 0) =

{
u−, x < 0
u+, x > 0

has a solution. Further, this solution consists of at most (n + 1)
constant states separated by shock, centered rarefaction wave and
contact discontinuity. There is precisely one such solution.



The proof of this theorem follows simply from inverse function
theorem.
Proof: By Proposition 3.1 and 3.2, there exists a neighborhood N
and a > 0 such that T k

εk
: N → Rn for |εk | < a, k = 1, 2, · · · , n,

are well defined and C 2,1 with the property that for any u εN, u
can be joint to T k

εk
u on the right by either a k-shock or a

k-centered rarefaction wave or k-contact discontinuity.
Now let ul εN be fixed. Define
f = {ε = (ε1, · · · , εn) ∈ Rn : |εk | < a, 1 ≤ k ≤ n}. Let
T : f→ Rn be defined as

T (ε) = T n
εn(T n−1

εn−1
(· · · (T 2

ε2
(T 1

ε1
(ul))) · · · )) = T n

εn ◦T
n−1
εn−1
◦· · ·◦T 1

ε1
ul



Our goal is to show that for any ur εΩ sufficiently close to ul ,
|ur − ul | < δ, there is ε̄ = ε̄(δ) εf such that T (ε̄) ul = ur . To see
this, define F (ε) = T (ε) ul − ul . Since F (0) = 0 and rank
dF (0) = rank (r1(ul), r2(ul), · · · , rn(ul)) = n, by inverse function
theorem, there is δ > 0 such that, for any ur εΩ with |ur − ul | < δ,
there exists ε εf such that F (ε) = ur − ul , that is,
T n
εn ◦ · · · ◦ T

1
ε1

(ul) = ur . So the theorem follows.



Remark:

1. We may not solve the Riemann problem in two general
constant states. However, for gas dynamics, the Riemann
problem can be solved globally. For details see the book of
Joel Smoller, Shock Waves and Reaction - Diffusion Equation,
Springer - Verlag, Chapter 18.

2. Similar results can be obtained for system without assuming
that the field is genuinely nonlinear. For instance, see Liu, Tai
Ping, Admissible solutions of hyperbolic conservation laws,
Memoirs of the American Mathematical Society, 30 (1981),
no. 240 iv +78pp.



§3.2 Estimates on Wave Interactions
In scalar conservation laws, for any initial data consisting of
three constant states (ul , um, ur ), we have discussed all
possible wave interaction in Chapter 1. It becomes a shock for
interaction of two shocks, a rarefaction wave for those of two
rarefaction waves, a weak shock if the shock is stronger than
the rarefaction wave, and a weak rarefaction wave if the shock
is weaker than the rarefaction wave. For systems of
conservation laws, one should imagine that there are
difficulties for wave interaction. Fortunately, because any two
waves do not interact each other again after they have
interacted, the Riemann solution should determine the long
time asymptotics of a general solution just as in the scalar
case.



Lemma 3.1 Let (u−, u+) be solved with µ = (µ1, · · · , µn), i.e.,

u+ = Tµ u− = T n
µn ◦ · · · ◦ T

1
µ1

u−,

then

u+ = u−+
n∑

i=1

µi ri +
1

2

n∑
i=1

µ2
i ∇ri ·ri +

∑
1≤i<j≤n

µi µj ∇rj ·ri +o(|µ|3)

(3.18)
here all ri ,∇rj · ri are evaluated at u−.



Proof: Set ui = T i
µi
ui−1, i = 1, 2, · · · , n, u0 = u−, un = u+.

From Proposition 3.1 & 3.2,

ui = T i
µi
ui−1

= ui−1 + µi ri (ui−1) +
1

2
µ2
i ∇ri · ri (ui−1) + o(|µ|3)

= ui−1 + µi ri (u−) + µi (ri (ui−1)− ri (u−))

+
1

2
µ2
i ∇ri · ri (u−) + o(|µ|3)



since

ri (ui−1)− ri (u−) =
i−1∑
j=1

ri (uj)− ri (uj−1)

=
i−1∑
j=1

∇ri · rj(uj−1)µj + o(|µ|2)

=
i−1∑
j=1

µj ∇ri · rj(u−) + o(|µ|2)

hence

ui = ui−1+µi ri (u−)+
1

2
µ2
i ∇ri ·ri (u−)+

i−1∑
j=1

µi µj ∇ri ·rj(u−)+o(|µ|3)

(3.19)



By induction of (3.19) we get

uk = u−+
∑
i≤k

µi ri (u−)+
∑

i<j≤k
µi µj ∇rj ·ri+

1

2

∑
i≤k

µ2
i ∇ri ·ri+o(|µ|3)

for k = 1, 2, · · · , n. This gives the lemma.

Lemma 3.2 (Rough Estimate of Wave Interaction)
For any fixed ul εΩ, the result of interaction of two adjacent
Riemann solution α((ul , um)), β((um, ur )) is a simple Riemann
solution ε((ul , ur )). Then ε = ε(α, β) is C 2,1, that is, each second
partial derivatives are Lipschitz continuous, and satisfies



n∑
i=1

εi ri =
n∑

i=1

(αi+βi )ri+
∑
j≥k

αj βk (∇rk ·rj−∇rj ·rk)+o(|α|+ |β|)3

(3.20)

In particular, εi = αi + βi + O
(
|α| · |β|+ (|α|+ |β|)3

)
. If we

define Ri = ri · ∇, then (3.20) can be written as

n∑
i=1

εi Ri =
n∑

i=1

(αi + βi )Ri +
∑
j≥k

αj βk [Rj ,Rk ] + O(1)(|α|+ |β|)3

where [Rj ,Rk ] = Rj Rk − Rk Rj denotes the Lie bracket of two
vector fields.



Proof: By Lemma 3.1,

um = ul +
n∑

i=1

αi ri +
1

2

∑
α2
i ∇ri · ri +

∑
i<j

αi αj ∇rj · ri + O(|α|3) (3.21)

ur = um +
n∑

i=1

βi ri (um) +
1

2

∑
β2
i ∇ri (um) · ri (um)

+
∑
i<j

βi βj ∇rj(um) · ri (um) + O(|α|3) (3.22)

where ri , ∇ri are evaluated at ul for convenience.



Substitute (3.21) into (3.22), by the fact

ri (um) = ri (ul) +
∑n

j=1 αj ∇ri · rj + O(|α|2), we have

ur = ul +
n∑

i=1

αi ri +
1

2

n∑
i=1

α
2
i ∇ri · ri +

∑
i<j

αi αj ∇rj · ri +
n∑

i=1

βi ri (um)

+
1

2

n∑
i=1

β
2
i ∇ri · ri +

∑
i<j

βi βj ∇rj · ri + O(|α| + |β|)3

= ul +
n∑

i=1

(αi + βi )ri +
1

2

n∑
i=1

(αi + βi )
2∇ri · ri +

∑
i<j

(αi αj + βi βj )∇rj · ri

+
∑
i 6=j

αi βj ∇rj · ri + O(|α| + |β|)3 (3.23)

Since ε = ε(α, β) is a smooth function C 2,1, by the wave curve
definition, ε(0, 0), |ε| = O(1)(|α|+ |β|) and
|ε|n = O(1)(|α|+ |β|)n. On the other hand, ε solves (ul , ur ), hence

ur = ul +
n∑

i=1

εi ri +
1

2

∑
ε2
i ∇ri · ri +

∑
i<j

εi εj ∇rj · ri + O(|ε|3)

(3.24)



Compare (3.23), (3.24) with εi = αi + βi + O(1)(|α|+ |β|)2, we
obtain
∑

εi ri =
∑

(αi + βi ) ri +
∑
i<j

(αi αj + βi βj )∇rj · ri +
∑
i<j

αi βj ∇rj · ri +
∑
i>j

αi βj ∇rj · ri

−
∑
i<j

(αi + βi )(αj + βj )∇rj · ri + O(|α| + |β|)3

=
∑

(αi + βi ) ri +
∑
i>j

αi βj ∇rj · ri −
∑
i<j

αj βi ∇rj · ri + O(|α| + |β|)3

=
∑

(αi + βi ) ri +
∑
i<j

αj βi (∇ri · rj −∇rj · ri ) + O(|α| + |β|)3

This shows (3.20).



Remark: This is not the optimal estimate. For example,
α = (α1, 0), β = (0, β2) with α1 < 0, β2 < 0, then ε = (α1, β2)
and εi = αi + βi , i = 1, 2. This example illustrates that we may
get better estimate on the third order term. From the same idea of
the second order term, we need only to compute those waves
which will produce interaction.

Definition 3.7 (Approaching Waves) Elementary waves αj and βk
are said to be approaching if

(1) if j 6= k , then j > k.

(2) if j = k , then one of them must be a shock wave, i.e., either
αj < 0 or βk < 0.



Lemma 3.3 Under the same conditions as in Lemma 3.2, then∑
εi Ri =

∑
(αi+βi )Ri+

∑
j>k

αj βk [Rj ,Rk ]+D(α, β)O(S(α, β))

(3.25)

where S(α, β) = max {|αi |, |βi |}, D(α, β) =
∑′
|αj | · |βk |, the

summation
∑′

is taken over all approaching waves.

Proof: Define F : R2n → Rn by

F (α, β) =
∑

εi (α, β)Ri−

∑(αi + βi )Ri +
∑
j>k

αj βk [Rj ,Rk ]

 .

We claim that |F (α, β)| ≤ C D(α, β) · S(α, β). It can be realized
by the following two steps.



Step 1: If D(α, β) = 0, then F (α, β) = 0.
To see this, if either α ≡ 0 or β ≡ 0, then clearly F (α, β) = 0.
If αi 6= 0 for some i , then by D(α, β) = 0, βj = 0 for all j < i ,
and either αi · βi = 0 or αi > 0, βi > 0. If i is chosen to be
maximum number so that αi 6= 0, for the case αi > 0, βi > 0,
then the interaction wave εi is simply combining the
rarefaction waves into one. Hence εi = αi + βi and
F (α, β) = 0. It finishes step 1.

Step 2: By definition, F εC 2,1. So by Lemma 3.2,
F (0, 0) = F (α, 0) = F (0, β) = 0,F

′
α(0, 0) = 0, F

′
β(0, 0) = 0,

F
′′

(0, 0) = 0. It follows that F (α, β) =
∑

αi βj Φij (α, β),
here Φij (α, β) is Lipschitz continuous function. In fact,



F (α, β) =
∑
i,j

[
F (α1, · · · , αi , 0, · · · , 0, βj , · · · , βn)− F (α1, · · · , αi , 0, · · · , 0, βj+1, · · · , βn)

−F (α1, · · · , αi−1, 0, · · · , 0, βj , · · · , βn) + F (α1, · · · , αi−1, 0, · · · , 0, βj+1, · · · , βn)
]

=
∑
i,j

[
βj

∫ 1

0
F
′
βj

(α1, · · · , αi , 0, · · · , 0, t βj , βj+1, · · · , βn) dt

−βj
∫ 1

0
F
′
βj

(α1, · · · , αi−1, 0, · · · , 0, t βj , βj+1, · · · , βn) dt

]
=

∑
i,j

αi βj

∫ 1

0

∫ 1

0
F
′′
αi βj

(α1, · · · , αi−1, s αi , 0, · · · , 0, t βj , βj+1, · · · , βn) ds dt

and

Φij (α, β) =

∫ 1

0

∫ 1

0

F
′′

αi βj
(α1, · · · , αi−1, s αi , 0, · · · , 0, t βj , βj+1, · · · , βn) ds dt.

Φij satisfies Φij (0, 0) = 0, |Φij (α, β)| ≤ O(1)(|α|+ |β|).



Note that if αi , βj are not approaching, i.e., i < j and either
αi · βi = 0 or αi > 0, βi > 0, then Φij (α, β) = 0 since

F (α1, · · · , αi , 0, · · · , 0, βj , · · · , βn) = F (α1, · · · , αi , 0, · · · , 0, βj+1, · · · , βn)
= F (α1, · · · , αi−1, 0, · · · , 0, βj , · · · , βn) = F (α1, · · · , αi−1, 0, · · · , 0, βj+1, · · · , βn)
= 0

Therefore

|F (α, β)| =

∣∣∣∣∣∣
∑

Approaching

αi βj Φij (α, β)

∣∣∣∣∣∣
≤ O(1)D(α, β) · (|α|, |β|).



§3.3 Glimm Scheme and its Stability
In this section we give a description of the Glimm scheme to
solve the following general Cauchy problem

∂t u + ∂x f (u) = 0, (3.26)

u(x , t = 0) = u0(x) (3.27)

We suppose that (3.26) is strictly hyperbolic and each
characteristic field is either genuinely nonlinear or linearly
degenerate.

Before Glimm, people only worked on special initial data for
special systems. But for very general initial data, the break
through is really due to J. Glimm (1966).



We have known that for Riemann data

u(x , t = 0) = uR (x) =

{
u−, x < 0
u+, x > 0,

the Riemann problem has a unique solution which is the
superposition of constant states separated by k-elementary waves,
k = 1, 2, · · · , n, as long as |u+ − u−| � 1.

In the space of functions of bounded total variation, Glimm uses
the Riemann solution as the building blocks of general solution.
The essential idea is his realization of wave interactions. The
success of Glimm scheme is mainly due to two elements: 1) Glimm
functional; 2) idea of random choice.



(1) Random choice method
To make thing easy going, we introduce the method step by
step.

1. Let U1 be a neighborhood of 0. First choose a neighborhood
U3 (bounded open set), such that for any ul , ur ∈U3⊂U2, the
Riemann problem (ul , ur ) has a solution with intermediate
states u1, u2, · · · , un−1 ∈ U2 with Ū2 ⊂ U1. (See Figure 3.6)

Here we do not have maximum principle, so the Riemann
solution generally lies in a slightly bigger set than U3. Only for
special systems, (ul , ur ) is in the same region as U3.



2. Now choose positive constants C so large that CFL (Courant
- Friedrichs - lewy) condition holds

Λ = sup {|λ2(u)|, u εU2, 1 ≤ i ≤ n} < C =
∆x

∆t
, (3.28)

where ∆x ,∆t are the space step and time step, respectively.
In the construction of the sequence of approximate solutions,
we will let ∆x tend to zero.

3. Let a sequence θ = {θi}∞i=1 be a equally distributed sequence
of random numbers in (-1,1).
A sequence is equally distributed means that given any length,
the probability that a number is to be in any interval of this
length is the same, just like the Brownian motion.



4. For convenience of description, we give some notations. The
lattice is defined to be

Y + = {(m, n) εZ × Z ,m + n = 0 (mod 2), n ≥ 0}.

The mesh points are chosen to be

anm ∈ Φ =
∏

(m,n)∈Y + [(m − 1)∆x , (m + 1)∆x ]× {n∆t},
anm = ((m + θn) ∆x , n∆t).

(See Figure 3.7)



5 Approximate solution
This is constructed by induction on n εZ+ for each strip
R1× [n∆t, (n + 1) ∆t]. Inductively, if we have already defined
u(x , t), t ≤ (n − 1) ∆t, then one can define u(x , t) on
t < n∆t as follows:

for n + m = 0 (mod 2), set

v(x , (n − 1)∆t) =

{
u
(
an−1
m−1

)
, (m − 1)∆x ≤ x ≤ m∆x ,

u
(
an−1
m+1

)
, m∆x ≤ x ≤ (m + 1)∆x ,

then let u(x , t), (n − 1) ∆t ≤ t ≤ n∆t, be the solution to{
∂t v + ∂x f (v) = 0,
v(x , t = (n − 1)∆t) = v(x , (n − 1)∆t).



So u(x , t) is the Riemann solution in the boxes
[(m − 1)∆x , (m + 1)∆x ]× [(n − 1)∆t, n∆t].

Viewing the above construction, one may worry about several
things:

One thing is that it is possible that this induction may fail at a
stage N and the solution will defined only on R1 × (0,N ∆t). That
is, at stage N,

∣∣u (an−1
m−1

)
− u

(
an−1
m+1

)∣∣ may become so large that
we cannot solve the Riemann problem uniquely. Even in each strip,
is the solution well-defined?



The other one is that if the induction can be carried on to infinity,
do we have the convergence of the sequence of approximate
solutions? i.e. Can we have the stability of the scheme?

The third one is about the consistency of the scheme, i.e. if the
approximate solutions converge, can the limit function be the weak
entropy solution of the Cauchy problem?



Actually, Glimm solves these problems in his scheme:

a. In the space of functions of bounded total variation on R1,
the well-definedness and the stability are proved at the same
time for suitably small initial data. So the BV norm estimate
allows us to solve the Riemann problems step by step.

However, no other satisfactory function space has been
suggested until now to study weak solutions.



b. The stability estimate of Glimm gives strong compactness in
L1
loc(R1 × R1

+).

c. By the CFL condition, Glimm’s approximate solution solves
the equation exactly on each strip R1 × ((n − 1)∆t, n∆t).
Thus for consistency, one has only to assess the error across
t = n∆t. It is for this point that we require the randomness
of mesh points.



(2) Glimm Functional and the stability of the scheme
Our first goal is to obtain the “BV” norm estimate on the
approximate solutions.

For convenience of presentation, we need some terminologies.

a. “Diamond”. For m + n = odd (with n > 0), the unique
diamond centered at (xm, tn) is the region enclosed by the
segments joining anm−1 to an±1

m and an±1
m to anm+1. Here

xm = m∆x , tn = n∆t. (See Figure 3.8)

The advantage of using the notation of “diamond”, is that the
estimate on “Diamond” is easier to get. Then we can use it to
approximate the “TV” estimate on the whole x-axis.



b. “Mesh curve”, I -curve

- A mesh curve, I -curve, is an unbounded continuous, space like
curve which consists of piecewise linear segments joining the
mesh points anm to an+1

m+1 or an−1
m+1 (but not both). (See Figure

3.9)

- For each n ≥ 0, there is a unique I -curve, called Jn which
connects all anm to an+1

m±1 so that all the waves between tn and
tn+1 cross Jn.

In particular, J0 is the unique mesh curve which connects all
the mesh points at t = 0. (See Figure 3.10)



- All the I -curves admit partial ordering: we say that J ′

precedes J, J ′ < J, if J lies toward later time.

Two I -curves J− < J+, we say that J+ is an “immediate
successor” of J− if the symmetric difference is a diamond.
(See Figure 3.11)



c. Approaching waves on J

- Two elementary waves αi , βj across a mesh curve J (we
denote this by αi , βj ε J), they are approaching if the waves on
the left, say αi , is the faster family compared with βj , on the
right, i.e. i > j ; or if they are in the same family, then one of
them has to be a shock. Denote the set of all pairs of
approaching waves on J by App(J) and set

N(J) =
∑

App(J)

|αi | · |βj |.

Then N(J) takes into account of all the possible approaching
waves in the future.



- Let ∆ be a diamond, we say that two elementary waves αi

and βj are approaching in ∆, if αi , βj ε J− but not on J+, the
immediate successor of J−, and αi , βj are approaching on J−.
See Figure 3.12.

Then we set
D(∆) =

∑
App(∆)

|αi | · |βj |.

D(∆) will be used to measure the change of N(J) from J− to
J+.



d. Glimm’s Functional
For a given I -curve J, we define a functional which is
equivalent to the total variation of u across J as follows

L(J) =
∑
νj ε J

|νj |,

where the sum is taken over all the elementary waves across J.

In fact, this L(J) might increase for later time. The increase is
produced by wave interactions. However, if waves interact,
they will not interact later. So the potential wave interaction
functional N(J) is decreasing.



Our aim is to choose a positive constant C large enough so that a
new functional G (J),

G (J) = L(J) + C N(J),

is decreasing.

Theorem 3.2 (Glimm) Assume that the Glimm scheme is defined
up to mesh curve J−. Then there exists a δ0 > 0, independent of
J− and ∆t, such that as long as L(J−) ≤ δ0, then

G (J+) ≤ G (J−),

where J+ > J− is an immediate successor of J−.



Proof Let ∆ be the diamond between J− and J+. Let α and β be
the left and right incoming waves to ∆. The ending waves leaving
∆ is denoted by ε. Let

J+ = J0 ∪ J ′+, J− = J0 ∪ J ′−.

We have

L(J−) = L(J0) + L(J ′−) = L(J0) +
∑n

i=1 (|αi |+ |βi |)
L(J+) = L(J0) + L(J ′+) = L(J0) +

∑n
i=1 |εi |



By the wave interaction estimates (Lemma 3.3), we have

εi = αi + βi + D(α, β) (1 + S(α, β)),

where D(α, β) =
∑′ |αj | |βk | and the summation is over all

approaching waves. S(α, β) = max {|αi |, |βi |}.

Therefore, it follows that

L(J+)− L(J−) =
n∑

i=1

(|εi | − (|αi |+ |βi |))

≤
n∑

i=1

(|αi |+ |βi | − (|αi |+ |βi |) + D(∆) (1 + S(α, β)))

≤ D(∆)O(1).



On the other hand, we have

N(J+) = N(J0) + N(J0, J
′
+),

where N(J0, J
′
+) is the sum of the products of two approaching

waves, one crossing J0 and the other crossing J ′+. And

N(J−) = N(J0) + N(J ′−) + N(J0, J
′
−).



Note that

N(J0, J
′
+) =

′∑
|εi | |ν|,

where ν is any wave crossing J0 such that ν, εi are approaching
waves. Using Lemma 3.3 again, we claim that

′∑
|εi | |ν| ≤

′∑
(|αi |+ |βi |) |ν|+ O(1)D(∆) L(J−). (3.29)



Actually, there is no problem for those terms that αi , ν and βi , ν
are approaching waves. If εi and ν have the same index, and ν is a
rarefaction wave, and if αi (or βi ) is also a rarefaction wave, then
it will not approach ν. However, in this case, we have εi < 0,
αi > 0 (or βi > 0). So from

εi = αi + βi + O(1)D(α, β)

it yields

|εi | < |βi + O(1)D(α, β)|
(or |εi | < |αi + O(1)D(α, β)| )



If αi , βi are both rarefaction wave, then αi > 0, βi > 0, one has

|εi | < |O(1)D(α, β)|.

Thus the claim (3.29) holds. So

N(J0, J
′
+) ≤

1∑
(|αi |+ |βi |) |ν|+ O(1)D(∆) L(J−)

≤ N(J0, J
′
−) + O(1)D(∆) L(J−).

N(J+)− N(J−) ≤ −N(J ′−) + O(1)D(∆) L(J−)

= −D(∆) + O(1)D(∆) L(J−).



By definition,
G (J−) = L(J−) + C N(J−),

G (J+) = L(J+) + C N(J+),

therefore, one has

G (J+)− G (J−) = L(J+)− L(J−) + C (N(J+)− N(J−))

≤ O(1)D(∆)− C D(∆) + C O(1)D(∆) L(J−)

= C D(∆)

[
−1 +

O(1)

C
+ O(1) L(J−)

]
.

Choose δ0,C such that O(1) δ0 ≤ 1
2 , O(1)

C ≤ 1
4 , one has

G (J+)− G (J−) ≤ 0.



Theorem 3.3 There exists a positive constant δ1 > 0 such that if
L(J0) ≤ δ1. Then the Glimm scheme can be defined for all time
and for any I -curve J. Furthermore, we have

L(J) ≤ 2δ1.

Proof From Theorem 3.2, we know that if J+
0 is an immediate

successor of J0, then there exists a C > 0 such that

L(J+
0 ) + C N(J+

0 ) ≤ L(J0) + C N(J0) ≤ L(J0) + C L2 (J0).

So if L(J0) < min
{

1, 1
C

}
, then

L(J+
0 ) + C N(J+

0 ) ≤ 2L(J0)

Thus if L(J0) is small, the Glimm scheme can be defined on J+
0 .



Now, by induction, for any I -curve J > J0, we can start from J0 to
J by immediate successors and we have

L(J) + C N(J) ≤ L(J0) + C N(J0) ≤ 2L(J0).

Hence, there exists a small positive constant δ1 > 0 such that if
L(J0) ≤ δ1, which is equivalent to the fact that the total variation
of u0 is small, then

L(J) ≤ 2δ1, ∀ J > J0. (3.30)

At the same time, the inequality (3.30) guarantees the Glimm
scheme can be defined for all time and for any I -curve J.

The proof of the theorem is finished.



We denote the approximate solutions constructed through Glimm
Scheme by u∆t

θ or u∆x
θ . Then as a consequence of Theorem 3.2

and Theorem 3.3, we have shown that

Corollary 3.1 There exists a δ > 0 such that if TV u0 ≤ δ, then

(1) OSC u∆t
θ ≤ TV u∆t

θ ≤ C1 TV u0;

(2) sup u∆t
θ ≤ C2,

where C1 and C2 are some constants.



Corollary 3.2 (Temperal estimates) Under the same assumption in
Theorem 3.3, one has that for any t, t ′ > 0,∫ +∞

−∞
|u∆t
θ (x , t)− u∆x

θ (x , t ′)|dx ≤ C3 |t − t ′|,

where C3 is independent of t and t ′.

Proof For any fixed t, t ′, we assume t ′ > t without loss of
generality. Let

D(x , t ′) =

{
(y , t)| |y − x | ≤ ∆x

∆t
(t ′ − t)

}
.

(See Figure 3.14)



Due to CFL conditions (3.28), it concludes that D(x , t) contain
the domain of dependence of (x , t ′). Now define

V (y , t) =


u∆x
θ (y , t), (y , t) εD (x , t ′),

ū+ = limy→(x+ ∆x
∆t (t′−t))− u∆x

θ (y , t), y ≥ x + ∆x
∆t (t ′ − t),

ū− = limy→(x−∆x
∆t (t′−t))+ u∆x

θ (y , t), y ≤ x − ∆x
∆t (t ′ − t).

Denote by V∆x
θ (y , t) the Glimm approximate solution with Cauchy

data V (y , t). Then, it is clear that

u∆x
θ (x , t) = V∆x

θ (x , t)

and since D(x , t ′) contain the domain of depence of (x , t ′), one has

u∆x
θ (x , t ′) = V∆x

θ (x , t ′)



Furthermore, one has

lim
y→+∞

V∆x
θ (y , t) = lim

y→+∞
V∆x
θ (y , t ′) = ū+,

lim
y→−∞

V∆x
θ (y , t) = lim

y→−∞
V∆x
θ (y , t ′) = ū−.

It follows that∣∣u∆x
θ (x , t ′)− u∆x

θ (x , t)
∣∣ =

∣∣V∆x
θ (x , t ′)− V∆x

θ (x , t)
∣∣

≤
∣∣V∆x
θ (x , t ′)− ū+

∣∣+
∣∣V∆x
θ (x , t)− ū+

∣∣
≤ TV V∆x

θ (·, t ′) + TV V∆x
θ (·, t)

≤ O(1)TV V∆x
θ (·, t) (by Theorem 3.3)

= O(1)TV u∆x
θ (·, t)|D(x ,t′)



Consequently,∫ +∞
−∞

∣∣u∆x
θ (x , t ′)− u∆x

θ (x , t)
∣∣ dx ≤ C4

∫ +∞
−∞ T .V . u∆x

θ (·, t)
∣∣
D(x,t′)

dx

= C4

∫ +∞
−∞

(∫ x+O(1) (t′−t)

x−O(1) (t′−t)
| d u∆x

θ (·, t)|
)
dx

= C4

∫ +∞
−∞

(∫ O(1) (t′−t)

−O(1) (t′−t)
| d u∆x

θ (x + ·, t)|
)
dx

= C4

∫ O(1) (t′−t)

−O(1) (t′−t)

∫ +∞
−∞ |d u∆x

θ (x + ·, t)| dx
= O(1)|t ′ − t|TV u∆x

θ (·, t)
≤ C |t ′ − t|TV u0 (by Corollary 3.1)



Theorem 3.4 (Compactness of Glimm Solution)
There exists a subsequence of {u∆x

θ : θ εΦ, ∆t > 0}, which
converges in L1

loc to a function u(x , t). Furthermore, u(x , t)
satisfies

(i) ||u(·, t)||L∞ ≤ C1;

(ii) T .V . u(·, t) ≤ C2;

(iii) ||u(·, t1)− u(·, t2)||L1
loc
≤ C3 |t2 − t1|,

where Ci (i = 1, 2, 3) are constants.



Proof By our previous estimates, we have

(H1) ||u∆x
θ (·, t)||L∞ ≤ C1,

(H2) T .V . u∆x
θ (·, t) ≤ C2,

(H3) ||u∆x
θ (·, t2)− u∆x

θ (·, t1)||L1
loc
≤ C3 |t2 − t1|

By (H1) and (H2), use Helley principle to get a countable set
{tm} ⊂ [0,T ], where {tm} is dense in [0,T ], such that
{u∆xi

θ (x , t)} converges at any point on each line t = tm
(m = 1, 2, · · · ) as ∆xi → 0+ (∆ti → 0+, by CFL). We still denote
u∆xi
θ by ui . It is noted that ∆xi → 0+ as i → +∞. We will show

that ui converges in L1
loc (R1 × R1

+) or L1
loc (R1 × (0,T )) for all

T > 0. For this purpose, we will show that for any X > 0,



Iij (t) =

∫ X

−X
|uj(x , t)−ui (x , t)|dx → 0 as i , j → +∞ for a.e. t ε [0,T ],

i.e. ui (x , t) forms a Cauchy sequence in L1(|x | ≤ X ).

For any given t ε [0,T ], there exists a {tm′} ⊂ {tm} such that
tm′ → t as m′ → +∞ . Then

Iij (t) ≤
∫ X

−X
|uj(x , t)− uj(x , tm′)|dx +

∫ X

−X
|uj(x , tm′)− ui (x , tm′)|dx

+

∫ X

−X
|ui (x , tm′)− ui (x , t)|dx

≤
∫ X

−X
|uj(x , tm′)− ui (x , tm′)|dx + 2C3|tm′ − t| ( by (H3))



Note that {ui (x , tm′)} is a Cauchy sequence in L1(|x | ≤ X ), we
obtain that for any ε > 0, we first choose m′ large enough such
that 2C3|tm′ − t| < ε

2 , then choose i , j large enough such that∫ X

−X
|uj(x , tm′)− ui (x , tm′)|dx <

ε

2
.

This proves that
Iij(t)→ 0 as i , j → +∞.



We have that {ui (x , t)} is a Cauchy sequence in L1
loc(R1 × R1

+).
We denote the limit by u(x , t). Then there exists a subsequence of
{ui (x , t)} still denoted by itself such that

ui (x , t)→ u(x , t) a.e. (x , t) ∈ R1 × R1
+.

And (i), (ii), (iii) of the theorem can be obtained from (H1), (H2)
and (H3). The proof of the theorem is finished.



§3.4 Consistency of Glimm scheme

Up to now, we have proved all the things except that u(x , t)
is a weak solution. To show that u(x , t) gives a weak solution,
we have to assess the error due to ui = u∆xi

θ (x , t). Recall that
the approximate sequence {u∆x

θ (x , t)} has the following
properties:

(i) |u∆x
θ (·, t)|L∞ ≤ M1

(ii) TV u∆x
θ (·, t) ≤ M2 = C1 · TV u0

(iii)
∫
|x|≤R |u

∆x
θ (·, t1)− u∆x

θ (·, t2)|dx ≤ CR · |t2 − t1| ∀R > 0

Then u∆x
θ (x , t)→ u(x , t) a.e. as ∆x → 0 for any

θ εΘ =
∏

[−1, 1], t > 0. Let



Eϕ (u, f (u)) =

∫ ∫
R1×R1

+

∂t ϕ · u + ∂x ϕ · f (u) dx dt

+

∫
R1

ϕ(x , 0) u(x , 0) dx

The ideal situation in the proof is that for any ϕ εC 1
c (R1 × R1

+),

θ εΘ, we want to get Eϕ(ui , f (ui )) = Eϕ(u∆xi
θ , f (u∆xi

θ ))→ 0 as
∆xi → 0+. Unfortunately, this ideal situation is false for some
several θ εΘ. Readers can see the example in the book of Smoller.
To conquer this, we may take over all θ to be random in Θ.

We compute Eϕ(u∆x
θ , f (u∆x

θ )) directly. From the construction by
Glimm scheme, on each time interval ((n − 1) ∆t, n∆t), u∆x

θ

solves the Riemann problem. Hence



Eϕ(u∆x
θ , f (u∆x

θ ))

= E(u∆x
θ , f (u∆x

θ ), ϕ)

=
∞∑
n=1

∫ ∫
R1×((n−1)∆t,n∆t)

(∂t ϕ · u∆x
θ + ∂x ϕ · f (u∆x

θ ))dx dt

+

∫
R1

ϕ(x , t = 0) u∆x
θ (x , t = 0) dx

=
∞∑
n=1

∫
R1

ϕ(x , t) u∆x
θ (x , t)

∣∣t=n ∆t−
t=(n−1) ∆t+

dx

+

∫
R
ϕ(x , t = 0) u∆x

θ (x , t = 0) dx

= −
∞∑
l=1

Jl(θ, x , ϕ)



where

Jl = Jl(θ,∆x , ϕ) =

∫
R1

(
u∆x
θ (x , l ∆t+)− u∆x

θ (x , l ∆t−)
)
· ϕ(x , l ∆t)dx

=

∫
R1

[
u∆x
θ (x , l ∆t)

]
ϕ(x , l ∆t)dx

[
u∆x
θ (x , l ∆t)

]
= u∆x

θ (x , l ∆t+)− u∆x
θ (x , l ∆t−)

We denote
J(θ,∆x , ϕ) = −

∑∞
l=1 Jl(θ,∆x , ϕ) = E (u∆x

θ , f (u∆x
θ ), ϕ). First,

we start with a rough estimate on J(θ,∆x , ϕ).



Lemma 3.4 There exist M, M1 > 0 independent of ϕ,∆x , θ such
that

(a) |Jl(θ,∆x , ϕ)| ≤ M ∆x · ||ϕ||L∞ ∀ l = 1, 2, · · ·
(b) |J(θ,∆x , ϕ)| ≤ M1 diam(suppϕ) ||ϕ||L∞
here diam (supp ϕ) = sup {|x − y |+ |t − τ | : (x , t), (y , τ) ε supp ϕ}

Proof: (b) is a consequence of (a). Let D > 0 be such that
ϕ(x , t) = 0 ∀ x εR, t > D, and Λ = ∆t

∆x ≤ C by CFL condition.
Then



|J(θ,∆x , ϕ)| ≤
∞∑
l=1

|Jl(θ,∆x , ϕ)|

=

D/∆t∑
l=1

|Jl(θ,∆x , ϕ)|

≤ M ∆x ||ϕ||L∞ ·
D

∆t

=
M

Λ
· D ||ϕ||L∞

So it suffices to prove (a). To do this, since u∆x
θ (x , t) solve the

Riemann problem in the region
((m − 1) ∆x , (m + 1) ∆x)× ((l − 1) ∆t, l ∆t) with m + l = even,
we have



|Jl (θ,∆x, ϕ)|

≤
∫
R
|[u∆x
θ (x, l ∆t)]| · |ϕ(x, l ∆t)|dx

=
∑

m+l=even

∫ (m+1)∆x

(m−1)∆x
|[u∆x
θ (x, l ∆t)]| · |ϕ(x, l ∆t)|dx

=
∑

m+l=even

∫ (m+1)∆x

(m−1)∆x
|ϕ(x, l ∆t)| · |u∆x

θ (x, l ∆t+)− u∆x
θ (x, l ∆t−)|dx

=
∑

m+l=even

∫ (m+1)∆x

(m−1)∆x
|ϕ(x, l ∆t)| · |u∆x

θ ((m + θl )∆x, l ∆t−)− u∆x
θ (x, l ∆t−)|dx

≤ ||ϕ||L∞
∑

m+l=even

∫ (m+1)∆x

(m−1)∆x
|u∆x
θ ((m + θl )∆x, l ∆t−)− u∆x

θ (x, l ∆t−)|dx

≤ ||ϕ||L∞
∑

m+l=even

TV[(m−1)∆x,(m+1)∆x] u
∆x
θ (·, l ∆t−) · 2 ∆x

= 2 ∆x · ||ϕ||L∞ TV u∆x
θ (·, l ∆t−)

≤ 2 M2 · ∆x ||ϕ||L∞

where M2 is stated in (ii).



The estimate is too rough to show J(θ,∆x , ϕ)→ 0 as ∆x → 0.
Now we regard θ εΘ as a random variable. To describe this
precisely, we set Θ = Π [−1, 1] ≈ Π [0, 1] so that Θ becomes a
probability space. Our goal is to show that there is a null set
N ⊂ Θ (meas(N) = 0) such that for any θ εΘ\N, and ϕ εC 1

c ,
J(θ,∆x , ϕ)→ 0 as ∆x → 0+. To this end, we need one more
lemma.



Lemma 3.5 Suppose ϕ is piecewise constant on each segment
[(m − 1)∆x , (m + 1)∆x ]× {l ∆t},m + l = even. Then

Jl1(·,∆x , ϕ)⊥Jl2(·,∆x , ϕ) on L2(Θ) if l1 6= l2

Proof: The main idea is that independent random variable with
zero mean are orthogonal, that is, we go to prove that

(1) If l1 < l2, then Jl1 is independent of θl2 .

(2)
∫

Θ Jl dθ = 0.



Indeed, (1) follows by definition of the Glimm scheme. For l1, Jl1
depends only on the construction before time, and does not
depend on the random variable θl2 after time. To show (2), from∫

Θ
Jl (θ,∆x , ϕ) dθ =

∫ (∫
Jl(θ,∆x , ϕ) dθl

)
d θ̃

here d θ̃ =
∏

j 6=l dθj . It suffices to compute
∫
Jl(θ,∆x , ϕ) dθl .

From similar computation as before,



∫ 1

−1
Jl(θ,∆x , ϕ) dθl

=

∫ 1

−1

∑
m+l=even

∫ (m+1)∆x

(m−1)∆x
ϕ(x , l ∆t) (u∆x

θ ((m + θl)∆x , l ∆t−)

−u∆x
θ (x , l ∆t−))dx dθl

=
∑

m+l=even

Cϕ,m,l

∫ 1

−1

∫ (m+1)∆x

(m−1)∆x
u∆x
θ ((m + θl)∆x , l ∆t−)

−u∆x
θ (x , l ∆t−)dx dθl (3.31)



Now we claim that the right hand side of (3.31) is zero. To do
this, since u∆x

θ (x , l ∆t−) depends only on θi , i = 0, 1, · · · , l − 1,
and does not depend on θl , we have∫ 1

−1

∫ (m+1)∆x

(m−1)∆x
u∆x
θ (x , l ∆t−)dx dθl = 2

∫ (m+1)∆x

(m−1)∆x
u∆x
θ (x , l ∆t−)dx

also, ∫ 1

−1

∫ (m+1)∆x

(m−1)∆x
u∆x
θ ((m + θl)∆x , l ∆t−)dx dθl

=

∫ 1

−1
u∆x
θ ((m + θl)∆x , l ∆t−) dθl · 2∆x

= 2

∫ (m+1)∆x

(m−1)∆x
u∆x
θ (y , l ∆t−)dy



Hence the claim holds and
∫
Jl(θ,∆x , ϕ) dθ = 0. Now for l1 6= l2,

say l1 < l2, by (1) and (2), we deduce that

< Jl1 , Jl2 > =

∫
Θ
Jl1(θ,∆x , ϕ) · Jl2(θ,∆x , ϕ)dθ

=

∫ (∫
Jl1(θ,∆x , ϕ) · Jl2(θ,∆x , ϕ)dθl2

)
Πl 6=l2 d θl

=

∫
Jl1 ·

(∫
Jl2 dθl2

)
Πl 6=l2 d θl

= 0

This proves Lemma 3.5.



Lemma 3.5 means merely that we can ignore all the intersection
terms Jl1 · Jl2 for l1 6= l2. We can ready to state the main
consistency theorem. This theorem completes the theory of Glimm
scheme.

Theorem 3.5 There exists a null set N ⊂ Θ and a sequence
∆xi → 0 such that for any θ εΘ \N and any ϕ εC 1

c (t > 0),

J(θ,∆xi , ϕ)→ 0 as ∆xi → 0



Proof:
Step 1: Let ϕ satisfies the condition in Lemma 3.5. Then

||J(·,∆x , ϕ)||2L2(Θ) =
∞∑
l=1

||Jl(·,∆x , ϕ)||2L2(Θ)

≤
∞∑
l=1

||Jl(·,∆x , ϕ)||2L∞(Θ)

≤ M2
∑
l∈Λ

(∆xi )
2 ||ϕ||2L∞

≤ M̄ ∆xi diam (supp ϕ) ||ϕ||2L∞



where Λ = {l : R1 × {l ∆t} ∩ supp ϕ 6= φ}. The first equality is
due to Lemma 3.5, the second line is due to the probability
measure on Θ, the third line comes by Lemma 3.4. Thus
J(·,∆xi , ϕ)→ 0 as ∆xi → 0+ in L2(Θ). Therefore, there is a null
set Nϕ depending on ϕ with meas(Nϕ) = 0 such that
J(·,∆xi , ϕ)→ 0 as ∆xi → 0 for all θ εΘ \Nϕ.

Step 2: For any ϕ ε L∞c , by Lemma 3.4 (b), we have

||J(·,∆x , ϕ)||L2(Θ) ≤ ||J(·,∆x , ϕ)||L∞(Θ)

≤ C ||ϕ||L∞



Step 3: Let ϕν be a sequence of piecewise constant function with
compact support which is L∞ and dense in C 1

c . For each ϕν , by
step 1, there is a null set Nν ⊂ Θ and a subsequence ∆xik → 0
such that J(θ,∆xik , ϕν)→ 0 as ∆xik → 0 ∀ θ εΘ \Nν . Set
N = ∪∞ν=1 Nν and choose a subsequence ∆xi (by diagonal process)
such that for any ν, J(θ,∆xi , ϕν)→ 0 as ∆xi → 0 ∀ θ εΘ \N.



For any ϕ εC 1
c , choose a sequence of piecewise constant function

ϕνk ε L
∞
c as above such that ||ϕνk − ϕ||L∞ → 0 as νk → +∞.

Hence

|J(θ,∆xi , ϕ)| ≤ |J(θ,∆xi , ϕ− ϕνk )|+ |J(θ,∆xi , ϕνk )|
≤ C ||ϕ− ϕνk ||L∞ + |J(θ,∆xi , ϕνk )|

and tends to zero by first choosing ϕνk so that
C ||ϕ− ϕνk ||L∞ < ε

2 , then choosing ∆xi small such that
|J(θ,∆xi , ϕνk )| < ε

2 . This proves the theorem.



§3.5 Front Tracking Method

{
∂t u + ∂x f (u) = 0, uεRn, xεR, t > 0
u(x , t = 0) = u0(x)

(3.32)

Assumption:

(i) f is smooth in Ω.
(ii) each characteristic family is either genuinely nonlinear or

linearly degenerate.



Approximate solution by front tracking:

Step 1: Construct uδ0 such that

1. uδ0 is piecewise constant with finite many jumps.

2. T .V .uδ0 ≤ T .V .u0

3.
∫
|uδ0 − u0|dx → 0 as δ → 0+



Step 2: Resolving the initial jump by solving Riemann problems

Caution If one uses this Riemann solver, one might find the
number of interactions could go to infinity at finite time, so that
one cannot extend the solution globally (due to the complexity of
the wave interaction in system).

Idea If the scheme is stable in BV, the most of the new waves are
extremely small, thus, can be ignored.



Simplified Riemann Solver
Case 1 i > j

um = Ti (α
′
i , ul)

ur = Tj(α
′
j , um)

uq = Tj(α
′
j , ul)

ũr = Ti (α
′
i , uq)

jα u r

α
u

ru

α
i

u
l

u m

α
j

q
i



Case 2 i = j

um = Ti (α
′
i , ul)

ur = Ti (β
′
i , um)

uq = Ti (α
′
i + β′i , ul)

j

ur

u

α
i

u
l

u m

q

β

pseudo shock



Case 3 In case of a front with a pseudo shock

uq = Ti (α
′
i , ul)

(uq, ur ) forms a pseudo shock with speed λ̂ .

(1.) t = 0. Accurate Riemann Solver (ARS).

(2.) at an interaction t̃ > 0, the two incoming fronts, α, β
if |α| |β| > σ, use ARS;
otherwise |α| |β| < σ, use SRS.

(3.) at the interaction time t̃ which involves pseudo shocks, use
SRS.

u
r

u

α
i

u
l

u
m

q



§3.6 A Front Tracking Algorithm

1. Accurate Riemann Solver

Let α interact with β to produce a solution ξ = (ε1, · · · , εn).
If all εi is either shock or contact discontinuity, leave it alone.
Otherwise εi > 0, as the i-th wave is center rarefaction wave.
Then we divide this rarefaction wave into small fan of
discontinuity in the following way:

For given δ > 0, let ν =
[εi
δ

]



Assume the i-wave is

uT = Ti (εν , u−) = Ri (εi , u−), εi > 0

Let u0 = u−, uj = Ri (jδ, u−), j = 1, · · · , ν
uν+1 = u+

uε(x , t) = uj when λi (u
j) < x

t < λi (u
j+1)



2. Simplified Riemann Solver (SRS)

3. Implement

Step 1: Let uδ0 be a piecewise constant approximation of u0(x)
with N-jumps (N <∞) such that{

T .V . uδ0 ≤ T .V . u0∫
|u0 − uδ0|dx ≤ δ

Then apply ARS to uδ0.



Step 2: When they interact, we first specify a constant σ > 0. Let
the interacting fronts be α and β. Then we will use

ARS if |α| · |β| ≥ σ
SRS if |α| · |β| < σ

(Here and from now on, front mean either shocks or rarefaction
front or contact discontinuity.)

If one of the incoming waves is a pseudo shock, then we will use
SRS always. Since we will show that total amount of pseudo shock
is small.



Order of waves:

Definition 3.8 The generation order of a wave is the maximum
number of collisions predating its birth.

Remark: All the waves presenting at t = 0 has order µ = 0. All
the new waves produced by wave interactions, say ε is a new wave
which is produced by interaction of α and β with order µ1 and µ2,
O(α) = µ1, O(β) = µ2.



Case 1: α and β are in different family, α is i-family, β is in the
j-family, ε is in the k-family.

if k = i , O(ε) = µ1,
if k = j , O(ε) = µ2,
if k 6= i , j , O(ε) = max{µ1, µ2}+ 1

Case 2: α and β are in the same family, i-family.

if k = i , O(ε) = min{µ1, µ2},
if k 6= i , O(ε) = max{µ1, µ2}+ 1

Approximate Characteristics: Xi (t) is said to be an i-characteristic
if Xi (t) is a piecewise line segment with constant slope λi (u

δ) if uδ

is constant and becomes an i-front when it hits an i-front.



§3.7 Approximate Solution

Goal: Eventually, we need to show the previously constructed
scheme produces a “good” approximate solution.

Definition 3.9 (Approximate solution) For any ε > 0. An
ε-approximate solution to the Cauchy problem (1) is a
vector-valued piecewise constant function separated by finitely
many line segments with the following properties:

1. Each wave may originate from either t = 0 or at the collision
points of two other waves and the wave in general will stay
forever unless it collides with other waves.

2. There are finitely many collision points.



3. All the waves are classified into three classes

(1.) shock wave or contact discontinuity: i-shock or i-contact
discontinuity is a triple (ul , ur , x(t)) such that ur = si (εi , ul)
and |ẋi − si | ≤ δ (where si is the speed of original shock or
contact discontinuity).

(2.) Rarefaction front: an i-rarefaction front is a triple (ul , ur , ẋi )
such that ur = Ri (τ, ul), 0 < τ < δ, and

|ẋi − λi (ur )| ≤ δ

(3.) Pseudo-shock: a pseudo shock is a triple (ul , ur , λn+1t) is a
discontinuity travelling with speed λn+1 .∑

yεps

|u(y(t)+, t)− u(y(t)−, t)| ≤ δ

4.

∫ ∞
−∞
|uδ(x , 0)− u0(x)|dx ≤ δ



Theorem 3.6 The front tracking algorithm discussed before
indeed produce a δ-approximation solution if one chooses δ and σ
appropriately and T .V .u0 is small.

Sketch of idea of the proof

1. Estimate of uδ(x , t):

• scheme has to be stable,
• to avoid produce too many fronts.

Glimm’s idea is crucial.

2. Total amount of pseudo shocks ≤ δ:

• tracking the order of waves.

(1.) interaction estimate

(2.) Glimm functional



Proof of Theorem 3.6

Step 1 Wave interaction estimates.

Lemma 3.6 (ARS) i-wave α and j-wave β interact and then
produce waves ε = (ε1, · · · , εn).

Case 1 i > j . |εi − α|+ |εj − β|+
∑
k 6=i ,j

|εk | = O(1)|α| · |β|

Case 2 i = j . |εi − (α + β)|+
∑
k 6=i

|εk | = O(1)|α| · |β|



Lemma 3.7 (SRS)

Case 1 |α| · |β| < σ.

|ũr − ur | = O(1)|α| · |β|

(whether i = j or not, we always have the above estimate)
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Case 2 One pseudo shock interacts with one front, then

|ũr − ur | − |um − ul | = O(1)|α| · |um − ul |
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Let uδ(x , t) be defined on some interval (0,T ), T > 0.

L(t) =
∑
|ν|

Let I be the collision times in (0,T ). L(t) is piecewise constant on
(0,T ). L(t) is well-defined on tε(0,T ) \ I .

∆L(t) = L(t+)− L(t−) t ε I .

∀ t ε(0,T ) \ I ,

Q(t) =

′∑
|α| · |β|

(α, β) are approaching waves acrossing t-time line.

α is i-wave, β is j-wave, either i > j or i = j and one of them
must be a compressive shock.



Q(t) is also piecewise constant, and
∆Q(t) = Q(t+)− Q(t−) ≤ 0 ∀ t ε I

∆L(t) = O(1)|α| · |β| t ε I

Q(t) =
∑′
|α| · |β|

Q(t+)− Q(t−) = −|α| · |β|+ O(1)|α| · |β| · L(t−)

choose a constant k ,

G (t) = L(t) + k Q(t)
∆G (t) = ∆L(t) + k ∆Q(t) t ε I



t ε I ,

∆G (t) ≤ O(1)|α| · |β|+ k(−1 + O(1) · L(t−))|α| · |β|
= (O(1)− k(1− O(1) · L(t−)))|α| · |β|

If O(1) L(t−) ≤ 1
2 , k ≥ 4O(1), then

∆G (t) ≤ −k

4
|α| · |β|



Claim: By induction, ∆G (t) ≤ −k
4 |α| · |β|, ∀ t ε I , if

L(0+)O(1) ≤ η0

G (t1+) ≤ G (t1−) = G (0+)
= L(0+) + k Q(0+)

≤ L(0+) + k
2L

2(0+)
≤ 2L(0+)

L(t1+) ≤ 2L(0+) .

By induction, we prove that L(t) ≤ η1,
∆G (t) ≤ −k

4 |α| · |β| ∀ ε ε I .



Step 3 Estimates on total interactions.

∀ t ε I ,

∆Q(t) = (−1 + O(1) · L(t−))|α| · |β| ≤ −1

2
|α| · |β|

1

2

′∑
|α| · |β| ≤ −

∑
∆Q(t) = Q(0+)− Q(T )

≤ Q(0+) ≤ 1

2
L2(0+)



Step 4 Estimates on the number of collision.

The key is to estimate the number of collisions which have to be
resolved by ARS, which will be used only when the incoming
interacting waves satisfy |α| · |β| ≥ σ .

′∑
t ε I

|α| · |β| =
′∑

|α||β|≥σ

|α| · |β|+
′∑

|α|·|β|<σ

|α| · |β|

Nσ ≤
′∑

|α||β|≥σ

|α| · |β| ≤ 1

2
L2(0+)

N ≤ 1

2σ
L2(0+)

⇒ total number of collisions is finite (e.x.).
⇒ uδ(x , t) can be defined on (0,+∞) .



Step 5 Total variation estimates on a non-resonant curve.

Definition 3.10 A Lipschitz continuous curve is said to be
non-resonant if it divides the half plane into positive

∑+ and
negative

∑−.
Further {1, · · · , n, n + 1} can be decomposed into N+, N0, N−

such that:

1. N0 contains at most one point,

2. N+, N0, N− are pairwise disjoint,

3. N+ and N− contain consecutive numbers in
{1, 2, · · · , n, n + 1},



t

x

Σ Σ
− +

If i εN−, and i-characteristic hits c , then it crosses c from
∑+ to

∑−.
If i εN+, and i-characteristic hits c , then it crosses c from

∑− to
∑+.

If i εN0, and i-characteristic hits c , then it must become part of c (it can
hit c from both sides).

(Here i-characteristic means i-approximate characteristic.)



Example 1: t = constant, c > 0 is non-resonant, N0 = φ, N− = φ,

N+ = {1, · · · , n, n+ 1}.
Σ

Σ

−

+



Example 2: Any space-like curve. Assuming λ1(u) < 0 < λn+1(u),
these may be represented by Lipschitz functions t = t̂(x),

−∞ < x <∞, with 1
λ1
< dt̂1

dx < 1
λn+1

, a.e. on (−∞,+∞) .

In that case N+ = {1, · · · , n + 1} while N− = N0 = φ .



Example 3: cisi-characteristics.

Xi : ith-characteristics

N0 = {i}
N− = {1, 2, · · · , i − 1}
N+ = {i + 1, · · · , n + 1}

ΣΣ
− +



Let c be Lipsehitz and non-resonant with respect to uδ .
T V uδ|c =

∑
|ν| , ν are all the waves cross c .

Let J be the times that some waves hits on c ,

M(t) =
∑
−
|ν|+

∑
+

|ν|+
∑

0

|ν| t ε(0,T ) \ (I U J)

∑
−: sums over all the i-wave, i εN−, cross t-time line on the

positive side.∑
+: sums over all the i-wave, i εN+, cross t-time line on the

negative side.∑
0: sums over all the i-wave, with i εN 0, which cross t-time line

on either side of e .



∆M(t) = −ν t ε J \ I
∆M(t) = O(1)|α||β| t ε I \ J
∆M(t) = −|ν|+ O(1)|α||β| t ε I ∩ J

where |α| and |β| are the strengths of the waves colliding at t ε I
and |ν| is the strength of the wave that impinges on c at t ε J .

T V uδ|c ≤ M(T ) ≤ M(0) + k
′∑
|α||β| ≤ 2L(0+)



Step 6 Estimate the total strength of the pseudo shocks.

Main idea: Waves of higher generation order are produced after a
large number of collisions. So it should be expected to be small if
its initial strength is small.

Step 6.1 Estimate on the total strength of waves of higher
generation order.

Since the total number of collisions of waves is finite, the
generation order is finite also, ∃ ν > 0, 0 ≤ µ ≤ ν. However,
ν = ν(δ) and in general, ν(δ)→ +∞ if δ → 0.



Definition 3.11

(1.) Lµ(t) =
∑
|ν|, |ν| across t-time line and µ(ν) ≥ µ.

(2.) Qµ(t) =
∑′
|α| · |β|, where α and β are approaching waves.

Both cross t-time line, moreover, max{µ(α), µ(β)} ≥ µ.

(3.) Iµ = {t ε I ; at which a wave of order µ collides with a wave of
order ≤ µ}.



In particular, L0(t) = L(t), Q0(t) = Q(t). How to estimate Lµ(t)
and Qµ(t) when µ large?

Lemma 3.8

(1.) ∆Lµ(t) = 0 t ε I0 U I1 U · · ·UIµ−2

(2.) ∆Lµ(t) + 2k ∆Qµ−1(t) ≤ 0 t ε Iµ−1 U · · ·UIν
(3.) ∆Qµ(t) + 2k ∆Q(t) Lµ(t−) ≤ 0 t ε I0 U · · ·UIµ−2

(4.) ∆Qµ(t) + 2k ∆Qµ−1(t) L(t−) ≤ 0 t ε Iµ−1

(5.) ∆Qµ(t) ≤ 0 t ε Iµ U · · ·UIν



Proof of Lemma 3.8

(1.) ∆Lµ(t) = 0 t ε I1 U · · ·UIµ−2

This follows, interactions among waves of generation order
≤ µ− 2, can produce waves of the generation order ≤ µ− 1,
which has no effects on Lµ(t).



(2.) can be proved similarly. It follows from this lemma that

Claim: If η is small, then

L̂µ = sup
t

Lµ(t) ≤ 2−µ c η

Q̂µ =
∑
t ε I

[∆Qµ(t)]+ ≤ 2−µ+3 c2 η2 (T .V . u0 ≤ η0)

[A]+ = max{A, 0}, [A]− = max{−A, 0}



Proof of the claim:

Part 1: Note that Lµ(0+) = 0, µ = 1, 2, · · · , ν, then it follows (1.)
+ (2.) (in fact, sum them up) to get

Lµ(t) ≤
∑

t ε Iµ−1U···UIν

(−2k ∆Qµ−1(t))

≤ 2k
∑
t ε I

[∆Qµ−1(t)]−

so L̂µ ≤ 2k
∑
t ε I

[∆Qµ−1(t)]−



Part 2: Estimate on the potential Qµ(0+) = 0, µ = 1, 2, · · · , ν,

L(t) = L0(t) ≤ G (t) ≤ G (0+)

≤ L(0+) +
1

2
L2(0+)

≤ 2L(0+)∑
[∆Q(t)]− = Q(0+)− Q(T−) ≤ Q(0+)

≤ 1

2
L2(0+)



(3.) + (4.) + (5.)∑
t ε I

[∆Qµ(t)]+ ≤ 2k
∑

Lµ(t−) [∆Q(t)]− + 2k
∑

[∆Qµ−1]−L(t−)

≤ 2k L̂µ
∑
t ε I

[∆Q(t)]− + 4k L(0+)
∑
t ε I

[∆Qµ−1]−

≤ 2k L̂µ
1

2
L2(0+) + 4k L(0+)

∑
[∆Qµ−1]−



Therefore,

(2) Q̂µ ≤ 2k · 2k
∑

[∆Qµ−1(t)]− · 1

2
L2(0+)

+4k L(0)
∑

[∆Qµ−1(t)]−

so Q̂µ ≤ 1

2

∑
t ε I

[∆Qµ−1(t)]−, µ = 1, 2, · · · , ν,

when L(0+) is small enough.

In particular, for µ = 1,

Q̂1 ≤
1

2

∑
[∆Q]− ≤ 1

4
L2(0+)



However,∑
t ε I

[∆Qµ(t)]− =
∑
t ε I

[∆Qµ(t)]+ −
∑
t ε I

[∆Qµ(t)], µ = 1, 2, · · ·

since [A]+ − [A]− = A, Qµ(0+) = 0,

hence
∑
t ε I

[∆Qµ(t)]− ≤
∑
t ε I

[∆Qµ(t)]+ ≡ Q̂µ

so Q̂µ ≤ 1

2
Q̂µ−1 µ = 1, 2, · · · , ν.

This implies the claim by induction.



Step 6.2 Estimate of the combined strength of pseudo shocks of
generation order ≤ µ0.

Part 1: Bound on the number of waves of generation order ≤ µ0.
Let kµ be the number of waves of order ≤ µ. Then
k : wave strength

kµ ≤ kµ−1 +
1

2
(k2
µ−1)

k

δ
n

≤ b

δ
k2
µ−1

=⇒ kµ ≤
(
b

δ

)2µ+1

c2µ ,

c depends on initial data.



Part 2: Estimate on the strength of a pseudo shock. Let α be the
strength of the pseudo shock.

Claim: |α| ≤ c σ

Proof of the claim: This is true initially. The strength of the
wave will change only when it interacts with front of strength β,
by the estimate, now the strength will be

O(1)σ(1 + |β|)

as the strength at any time is bounded by

O(1)σ · Π(1 + |β|) ≤ O(1)σ e
∑
|β|

= O(1)σ · eO(1)−L(0+) = O(1)σ



Conclusion: The combined strength of pseudo shocks of order
µ0 ≤ kµ0 σO(1) < ε

2 (choose σ small enough).

∀ ε > 0, ∃µ0 such that L̂µ0 < 2−µ0 c η <
ε

2

then fix µ0, choose σ so small that

kµ0 O(1)σ <
ε

2

=⇒ the combined strength of all pseudo shocks of any order ≤ ε.
Consequently =⇒ Theorem 3.6



Theorem 3.7 Let uδ be a sequence of δ-approximate solution
constructed by the front-tracking algorithm. Then ∃ subsequence
δk → 0 as k →∞, such that

uδk → u, a.e. R1 × (0,∞)

such that

(i) u(·, t)εBV , which is a weak solution to (1.1)-(1.2).

(ii) u satisfies the entropy admissible condition.

(iii) T .V . u(·, t) ≤ c T .V . u0 0 ≤ t < +∞.

(iv)
∫∞
−∞ |u(x , t)− u(x , s)|dx ≤ c |t − s|T .V . u0.

(v) the trace of u on any Lipschitz continuous graph in R′ × R′+
which is non-resonant to uδ has bounded total variation.



Proof:

Step 1: Recall that the δ-approximate solution uδ constructed by
our front tracking algorithm satisfies

T .V . uδ(·, t) ≤ c T .V . u0 ∀t ≥ 0∫ ∞
∞
|uδ(x , t)− uδ(x , s)|dx ≤ c T .V . u0(t − s) ∀t ≥ s (e.x .)

The same arguments using Helley’s principle and diagonal
procedure

=⇒ ∃ δk → 0 as k → +∞, s.t. uδ → u a.e. R
′ × R

′
+



Step 2: Consistency of the front tracking method

Aim : ∂tu + ∂x f (u) = 0 in D
i.e. ∀ϕ ε c∞0 (R′ × R′+)∫ ∫

∂t ϕ u(x , t) + ∂x ϕ f (u(x , t))dx dt +

∫ ∞
−∞

ϕ(x , 0) u0(x)dx = 0

Therefore, define

Eδ(ϕ) =

∫ ∫
{∂t ϕ uδ + ∂x ϕ f (uδ)}dx dt +

∫
ϕ(x , 0) uδ(x , 0)dx

so Eδ → 0 as δ → 0+
iff the scheme is consistent.



Recall that uδ(x , t) is a piecewise constant function with
FINITELY many jumps which are called x = xα(t) (α < N). By
using Green’s theorem and direct computation, we have,

Eδ = −
∫ +∞

0

∑
α

ϕ([f (uδ)]− ẋα[uδ])(xα(t), t)dt

where [A] = A(xα+)− A(xα−). The summation runs over all the
jumps of uδ at the time t.

Case 1: x = xα(t) is an approximate shock or contact
discontinuity.



Claim: |([f (uδ)]− ẋα(t)[uδ])(xα(t), t)| ≤ δ|[uδ](xα(t), t)|

Proof of the claim: Recall the shock speed s = λi (u
+
δ , u

−
δ ) by

R-H condition
[f (uδ)]− s[uδ] = 0

so

|[f (uδ)]− ẋα[uδ]| ≤ |[f (uδ)]− s[uδ]|+ |s[uδ]− ẋα[u̇δ]|
≤ 0 + δ|[uδ]|
= δ|[uδ]|



Case 2: x = xα(t) is an approximation rarefaction front.

Recall that the shock wave curve and the rarefaction wave curve
are at least 2nd order contact.

|
(
[f (uδ)]− ẋα[uδ]

)
| ≤ |[f (uδ)]− s[uδ]|+ |s[uδ]− ẋα[uδ]|

= 0 + |s − ẋα| |[uδ]|
≤ c δ|[uδ]|



Case 3: x = xα(t) is a pseudo shock.

|[f (uδ)]− ẋα[uδ]| ≤ c |[uδ]|

By cases 1-3, we have

|Eδ| ≤ c ϕ

∑
α ε p

|[f (uδ)]− ẋα[uδ]|+
∑
α εN p

|[f (uδ)]− ẋα[uδ]|


≤ c ϕ(c δ T .V u0 + c δ)
≤ c ϕ c(1 + T .V u0)δ
−→ 0 as δ → 0+



Step 3: Entropy solution

Let (η(u), q(u)) be an entropy-entropy flux with η convex. Let
ϕ ε c∞c (R′ × R′+), with ϕ ≥ 0. Then applying Green’s theorem, we
can get∫ ∫

{∂t ϕ η(uδ) + ∂x ϕ q(uδ)}dx dt +

∫
ϕ(x , t = 0) u0

δ dx

= −
∫ +∞

0

∑
α

ϕ([q(uδ)]− ẋα(t)[η(uδ)])dt



Case 1: x = xα(t) is i-entropy shock

[q(uδ)](xα(t), t)− ẋα(t)[η(uδ)](xα(t), t)
= [q(uδ)]− s[η(uδ)] + (s − ẋα(t))[η(uδ)]
≤ (s − ẋα(t))[η(uδ)]
≤ δ|[η(uδ)]|
≤ c δ|[uδ]|



Case 2 & 3: Similar as before. So we have

−
∫ +∞

0

∑
α

ϕ([q(uδ)]− ẋα(t)[η(uδ)])dt

≥ −c ϕ δ(T .V . u0 + 1)→ 0 as δ → 0

Step 4: Proof of (5.)

An easy self exercise.



§3.8 Continuous Dependence of the front Tracking
Solutions

Recall (scalar case){
∂t u + ∂x f (u) = 0 u εR′

u(x , t = 0) = u0(x)

L1-contraction principle
Let u and υ be two “right” solutions to (1) with initial data u0 and
υ0 respectively. Then∫ ∞

−∞
|u(x , t)− υ(x , t)|dx ≤

∫ ∞
−∞
|u0(x)− υ0(x)|dx



∃ example due to B temple. NO L1-contraction in n × n system.
Our aim:∫ ∞

−∞
|u(x , t)− υ(x , t)|dx ≤ c

∫ ∞
−∞
|u0(x)− υ0(x)|dx

Bressan’s idea: In a non-translation invariant space,

1

c
||u − υ||L1 ≤ p(u, υ) ≤ c||u − υ||L1

p(u, υ)(t) ≤ p(u, υ)(s) ∀ t ≥ s



Let u and υ be δ-approximate solutions to (1.1). For fixed t, then

υ(x) = snpn(x) ◦ · · · ◦ s1
p1(x) u(x)

Define

p(u(x), υ(x)) =

∫ +∞

−∞

n∑
i=1

wi (x) |pi (x)| dx

where wi (x) are weights to be determined.



If 1 ≤ wi (x) ≤ 2, then∫ ∞
−∞

∑
|pi (x)| dx ≤ p(u, υ) ≤ 2

∫ ∞
−∞

∑
|pi (x)| dx

1

c

∫ ∞
−∞
|u(x)− υ(x)| dx ≤ p(u, υ) ≤ c

∫ ∞
−∞
|u(x)− υ(x)| dx

The crucial part is how to define wi (x)

wi (x) = 1 + k1 Ai (x) + k2(Q(u) + Q(υ))

where Q(u(t)) is the potential of wave interaction amount
approaching waves acrossing time t. Ai (x) are the total strength
of physical wave in u and υ which approach the i-wave pi (x).



Ai (x, t) =



 ∑
xα<x

i<kα≤n

+
∑

xα>x
1≤i<kα

 |σα| if i Ldg

 ∑
xα<x

i<kα≤n

+
∑

xα>x
1≤i<kα

 |σα| +



 ∑
kα=i

α ε J(u),xα<x

+
∑
kα=i

α ε J(υ),xα>x

 |σα| if pi (x) < 0

 ∑
kα=i

α ε J(u),xα>x

+
∑
kα=i

α ε J(υ),x>xα

 |σα| if pi (x) > 0

if i − gNL



Theorem 3.8 ∃ suitable constants δ0, k1, k2, c > 0, s.t. if u and
υ are δ-approximate solution constructed by front tracking
algorithm with G (u(t)) ≤ δ0, G (υ(t)) ≤ δ0. Then

p(u(t), υ(t))−p(u(s), υ(s)) ≤ c δ(t−s) ∀ 0 ≤ s c t ∀ 0 ≤ s ≤ t

Proof: The key is to understand the evolution of p in time,

p(u, υ) =

∫ +∞

−∞

n∑
i=1

wi (x) |pi (x)| dx



Step 1: (At collosion time)

t = τ ε I U I
′

where I : collosion time of u, I
′
: collosion time of υ.

First, note that pi (x , t) : [0,+∞) −→ L1(R1) are continuous at
t = τ .

Next, let σ and σ1 be fronts in u which collide at t = τ , then

Q(u(τ+))− Q(u(τ−)) ≤ −1
2 |σ| |σ

1|
Ai (x , τ+)− Ai (x , τ−) = O(1) |σ| |σ1|



Recall
wi = 1 + k1 Ai + k2(Q(u) + Q(υ))

so
wi (x , τ+)− wi (x , τ−) ≤ 0,

if k2 is large enough.

Therefore
p(u, υ)(τ+) ≤ p(u, υ)(τ−)



Step 2: Let u and υ be two δ-approximate solutions.
Fixed (x , t)

u(x , t) = snp2
◦ · · · s2

p2
◦ s1

p1
(υ(x , t))

∀ t ∈ Iu ∪ Iυ.

In this case, d
dt p(u, υ)(t) is continuously differentiable. To

compute d
dt p(u, υ)(t), we set w0(x), · · · ,wn(x) by

w0(x) = u(x), · · · ,wn(x) = υ(x) by

wi (x) = s ipi (x) ◦ s i−1
pi−1(x) ◦ · · · ◦ s

1
p1(x)(w0)

si = λi (wi−1(x),wi (x))



Let x1(t), x2(t), · · · , xα(t), xN(t) be all the point where either u or
υ has a jump.

Claim:

d

dt
p(u, υ)(t)

=
∑
α ε J

n∑
i=1

ẋα[|pi |wi ](xα)

=
∑
α ε J

n∑
i=1

ẋα{|pi (xα+)| wi (xα+)− |pi (xα−)| wi (xα−)}

(3.33)



Proof of the claim:

p(u, υ) =

∫ x1(t)

−∞

n∑
i=1

wi (x , t) |pi (x , t)| dx +
N−1∑
α=1

∫ xα+1

xα(t)
+

∫ +∞

xN(t)

To estimate the right hand side of (3.33), we will denote

pα+
i = pi (xα+), pα−i = pi (xα−), wα±

i = wi (xα±), λα±i = si (xα±)

Since u and υ are constants on (xα−1(t), xα(t)), then

|pi (x)| λi (x) wi (x) = |p(α−1)+
i | λ(α−1)+

i w
(α−1)+
i = |pα−i | λ

α−
i wα−

i



then

d

dt
p(u, υ)(t)

=
∑
α ε J

n∑
i=1

{|pα+
i | w

α+
i (λα+

i − ẋα)− |pα−i | w
α−
i (λα−i − ẋα)}

=
∑
α ε J

n∑
i=1

Eα,i (t)

where

Eα,i = |pα+
i | w

α+
i (λα+

i − ẋα)− |pα−i | w
α−
i (λα−i − ẋα)



Proposition 3.3

n∑
i=1

Eα i ≤ O(1) |σα| α εN p (3.34)

n∑
i=1

Eα i ≤ O(1) δ |σα| α ε s ∩ R (3.35)



Proof: Let us start with α εN p.

Eα,i = wα+
i |pα+

i | (λα+
i − ẋα)− wα−

i |pα−i | (λα−i − ẋα)
= (wα+

i − wα−
i ) (λα+

i − ẋα) |pα−i |
+wα−

i (λα+
i − λα−i ) |pα−i |

+wα+
i (λα+

i − ẋα) (|pα+
i | − |p

α−
i |)

wα+
i − wα−

i = k1(Aα+
i − Aα−i ) = k1|σα|

λα+
i − λα−i = O(1) |σα|

|pα+
i | − |p

α−
i | = O(1) |σα|



Key thing is to show (3.35).

Fix α w±i = wα±
i , p±k = pα±k , υ± = υ(xα±)

Proof of (3.35):

Step 1: Reduction to a single shock case. xα is a jump point of υ.
So that α ε J(u), we introduce the

υ̂(x) = skασα(υ−), ˆ̇xα = λkα (υ−, υ̂)

Define p̂i (x) such that υ̂ = snp̂n ◦ · · · s
1
p̂1

(u), the intermediate state

ŵ0 = u(x), ŵ1, · · · , ŵn = v̂ , ŵi = s ip̂i ŵi−1, λ̂i = λi (ŵi−1, ŵi ).



Case 1: xα is a shock or a contact discontinuity, by

υ̂ = υ+, ŵi = w+
i , λ̂i = λ+

i , ∀ i
p̂i = p+

i

|ˆ̇xα − ẋα| < δ

(3.36)

Case 2: xα is rarefaction front, so 0 < σα ≤ δ. In this case, since
the shock wave curve and rarefaction wave curve are second order
contact, so

υ̂ = υ+ + O(1) |σα|3
p̂i = p+

i + O(1) |σα|3
ŵi = w+

i + O(1) |σα|3
λ̂i = λ+

i + O(1) |σα|3
|ẋα − x̂α| = O(1) δ

(3.37)



Eα,i = w+
i |p

+
i |(λ

+
i − ẋα)− w−i |p

−
i | (λ−i − ẋα)

= wα+
i |p+

i |(λ
+
i − ˆ̇xα)− w−i |p

−
i | (λ−i − ˆ̇xα)

+(ˆ̇xα − ẋα)(w+
i |p

+
i | − w−i |p

−
i |)

= {w+
i |p̂i |(λ̂i − ˆ̇xα)− w−i |p

−
i | (λ−i − ˆ̇xα)}

+{w+
i |p̂i | (λ+

i − λ̂i ) + w+
i (|p+

i | − |p̂i |)(λ+
i − ˆ̇xα)}

+(ˆ̇xα − ẋα)(w+
i |p

+
i | − w−i |p

−
i |)

≡ E 1
αi

+ E 2
αi

+ E 3
αi



Claim: ∀ i ε{1, 2, · · · , n}

E 2
α,i =

{
0 if σα < 0
O(1) |σα|3 if σα ε[0, δ]

(3.38)

E 3
α,i = O(1) δ |σα| (3.39)

Proof of (3.38): σα < 0, xα is a shock or contact discontinuity,
then (3.36) is true. Then

E 2
α,i = w+

i |p̂i | (λ+
i − λ̂i ) + wi (|p+

i | − |p̂i |) (λ+
i − ˆ̇xα)

= 0
if σα ε[0, δ],

E 2
α,i = O(1) |σα|3



Proof of (3.39):

E 3
α,i = (ˆ̇xα − ẋα){w+

i (|p+
i | − |p

−
i |) + (w+

i − w−i )|p−i |}

By construction, w+
i − w−i = k1(A+

1 − A−1 ) = O(1) k1 |σα|.

Next, ∣∣|p+
i | − |p

−
i |
∣∣ ≤ |p+

i − p−i | ≤ O(1) |σα|
E 3
α,i ≤ O(1) δ |σα|

It follows that one needs to show that

n∑
i=1

E 1
α,i ≤ O(1) δ |σα|



Step 2: Some elementary estimates

Proposition 3.4

(1) If the kα-family is linearly degenerate. Then

|p̂kα − p−kα − σα|+
∑
i 6=kα

|p̂i − p−i | = O(1)
∑
i 6=kα

|p−i | · |σα| (3.40)

(2) If the kα-family is genuinely nonlinear

|p̂kα − p−kα − σα|+
∑

i 6=kα
|p̂i − p−i |

= O(1)(|p−kα ||p
−
kα

+ σα|+
∑

i 6=kα
|p−i |)|σα|

(3.41)



(3) If the kα-family is genuinely nonlinear

ˆ̇xα − λ−kα =
p−kα + σα

2
+ O(1)

|p−kα + σα|(|p−kα |+ |σα|) +
∑
i 6=kα

|p−i |


ˆ̇xα − λ̂kα =

p−kα
2

+ O(1)

|p−kα |(|p−kα |+ |σα|) +
∑
i 6=kα

|p−i |





Lemma 3.9 Let Ψ(p̃, p∗, σ)εC 2,∞(Rn−1 × R× R→ R1) with
properties:

(a) Ψ(p̃, p∗, 0) = Ψ(0, s,−s) = Ψ(0, 0, σ) = 0,
then Ψ(p̃, p∗, σ) = O(1)(|p̃|+ |p∗||p∗ + σ|)|σ|

(b) If Ψ(p̃, p∗, 0) = 0 = Ψ(0, p∗, σ),
then Ψ(p̃, p∗, σ) = O(1)|p̃| · |σ|



Lemma 3.10 Let Ψ(p̃, p∗, σ)εC 1,∞(Rn−1×R1×R1 → R1). Then,

(a) If
∂Ψ

∂p∗
(0, 0, 0) =

∂Ψ

∂σ
(0, 0, 0) =

1

2
, Ψ(0, s,−s) = 0,

then Ψ(p̃, p∗, σ) =
p∗ + σ

2
+ O(1)(|p̃|+ |p∗ + σ|(|p∗|+ |σ|)).

(b) If
∂Ψ

∂p∗
(0, 0, 0) =

1

2
,Ψ(0, 0, σ) = 0, ∀σ,

then Ψ(p̃, p∗, σ) =
p∗

2
+ O(1)(|p̃|+ |p∗|(|p∗|+ |σ|)).



Proof of Proposition 3.4:

We fix u− = u(xα). Then all quantities, υ−, υ̂, λ−i , p̂i , λ̂i , wi , ŵi ,
can be regarded as functions of
p̃ = (p−1 , · · · , p

−
kα−1, p

−
kα+1, · · · , p

−
n ), p∗ = p−kα , σ = σα.

Ψ(p−1 , · · · , p
−
n , σα) = Ψ(p̃, p∗, σ)



Case 1: The kα-family is linearly degenerate, then set

Ψi = p̂i − p−i i 6= kα
Ψkα = p̂kα − p−kα − σα

i 6= kα Ψi (p̃, p
∗, 0) = 0

Ψi (0, p∗, σ) = 0

Skα
σ ◦ Skα

p−α
u− = Skα

σ+p−α
u− depends on that the kα-family is

linearly degenerate.



Case 2: If kα-family is genuinely nonlinear,

υ̂ = Skα
−s ◦ Skα

s u− = u−

Case 3:

Ψ
′
α(p̃, p∗, σ) = ˆ̇xα − λ−kα

Ψ
′′
α(p̃, p∗, σ) = ˆ̇xα − λ̂kα



Step 3: Linearly degenerate fields

Assume that the kα-family is linearly degenerate υ̂ = υ+, p̂i = p+
i ,

ŵi = w+
i , λ̂i = λ+

i , |ˆ̇xα − xα| < δ. Then

W+
kα

= W−
kα

Case 1: If i 6= kα, i-th family is linearly degenerate.



A+
i =

 ∑
xβ<x+

α
i<kβ≤n

+
∑

xβ>x+
α

1≤kβ<i

 |σβ|

A−i =

 ∑
xβ<x−α
i<kβ≤n

+
∑

xβ>x−α
1≤kβ<i

 |σβ|



i < kα A+
i − A−i = |σα|

i > kα A+
i − A−i = −|σα|

In summary,
A+
i − A−i = − sgn(i − kα) |σα|

so,
W+

i −W−
i = −k1 sgn(i − kα) |σα|



Case 2: i 6= kα, i-th family is genuinely nonlinear

W+
i −W−

i = −k1 sgn(i − kα) |σα|
λ−kα − ˆ̇xα = λkα(w−α )− λkα(υ−) = O(1)

∑
i>kα

|p−i |

p̂kα = p+
kα

= p−kα + σα + O(1)
∑
i 6=kα

|σα| · |p−α |



First,

E 1
α,kα

= W+
kα
|p̂kα | (λ+

kα
− ˆ̇xα)−W−

kα
|p−kα | (λ−kα − ˆ̇xα)

≤ W+
kα
|p̂kα | |λ−kα − λ̂kα |+ W+

kα
(|p̂kα | − |p−kα |)|λ

−
kα
− ˆ̇xα|

≤ W+
kα
|p̂kα | |(λ−kα − λ̂kα)|+ O(1) · |σα|

∑
i 6=kα

|p−i |

Ψ = Ψ(p̃, p∗, σ) = λ−kα − λ̂kα
Ψ(p̃, p∗, 0) = 0 = Ψ(0, p∗, σ) = 0



By Lemma 3.9, |λ−kα − λ̂kα | = O(1)(
∑
i 6=kα

|p−i |) |σα|

E 1
α,kα ≤ O(1)|σα|(

∑
i 6=kα

|p−i |)

for i 6= kα,

E 1
α,i = W+

i |p̂i |(λ
+
i − ˆ̇xα)−W−i |p

−
i |(λ

−
i − ˆ̇xα)

= W+
i |p̂i |(λ

+
i − ˆ̇xα)− k1 sgn(i − kα)|σα| |p−i |(λ

−
i − ˆ̇xα)

−W+
i |p

−
i |(λ

−
i − ˆ̇xα)

= −k1|λ−i − ˆ̇xα| · |σα| · |p−i |+ W+
i

{
|p̂i |(λ+

i − ˆ̇xα)− |p−i | (λ−i − ˆ̇xα)
}

≤ −k1 c1|σα| |p−i |+ W+
i (|p̂i | − |p−i |)(λ+

i − ˆ̇xα) + |p−i |(λ
−
i − λ

+
i )w+

i

≤ −k1 c1|σα| |p−i |+ W+
i |p̂i − p−i | |λ

+
i − ˆ̇xα|+ O(1)|p−i | |σα|



so, i 6= kα,

E 1
α,i ≤ −c1 k1|σα| |p−i |+ O(1)(

∑
i 6=kα

|p−i |) |σα|

n∑
i=1

E 1
α,i ≤ 0

if k1 is big enough.



Step 4: kα-family is genuinely nonlinear

Step 4.1: Estimate of E 1
α,i , i 6= kα

Then it follows from definition that

W+
i = W−

i − k1|σα| sgn (i − kα).



Consequently,

E1
α,i = −k1|σα| |p

−
i | |λ

−
i − ˆ̇xα| + W+

i

{
|p̂i |(λ̂i − ˆ̇xα)− |p−i |(λ

−
i − ˆ̇xα)

}
≤ −k1 c|p−i | |σα| + W+

i

{
(|p̂i | − |p

−
i |)(λ̂i − ˆ̇xα) + |p−i |(λ

−
i − λ̂i )

}
≤ −c k1|σα| |p

−
i | + W+

i

{
|p̂i − p−i | |λ̂i − ˆ̇xα| + |p−i | |λ

−
i − λ̂i |

}
≤ −c k1|σα| |p

−
i | + W+

i

{
|p̂i − p−i | |λ̂i − ˆ̇xα| + |p−i |(|σα|

3 + |λ−i − λ
+
i |)
}

≤ −c k1|σα| |p
−
i | + O(1)

δ|σα| + |p−kα | |p
−
kα

+ σα| +
∑
i 6=kα

|p−i |

 |σα|
∴ (F1) E1

α,i ≤ −c k1|σα| |p
−
i | + O(1)

δ|σα| + |p−kα | |p
−
kα

+ σα| +
∑
i 6=kα

|p−i |

 |σα|



Step 4.2: Estimate of E 1
α,kα

.

Case 1: |σα| ≤ δ, |p−kα | ≤ 2|σα|.

Then (3.4) ⇒

|p̂kα − p−kα | ≤ O(1)|σα|
|λ̂kα − λ−kα | ≤ |λ̂kα − λ+

kα
|+ |λ+

kα
− λ−kα | = O(1)|σα|

|λ̂kα − ˆ̇xα| ≤ |ˆ̇xkα − λ−kα |+ |λ̂kα − λ
−
kα
|



Proposition 3.4 (3) ⇒

≤ O(1)|σα|+
|p−kα + σα|

2
+ O(1)

|p−kα + σα| (|p−kα |+ |σα|) +
∑
i 6=kα

|p−i |


= O(1)

|σα|+ ∑
i 6=kα

|p−i |


= O(1)

δ +
∑
i 6=kα

|p−i |





It follows from (F1) and (F2) that

n∑
i=1

E 1
α,i = −c k1|σα|

∑
i 6=kα

|p−i |+ O(1)

δ +
∑
i 6=kα

|pi |

 |σα|
≤ O(1)δ|σα| if k1 is big enough!

here we have used (F1) and the assumption that

|σα| ≤ δ, |p−kα | ≤ 2|σα| ≤ 2δ.



Case 2: p−kα , p+
kα

and p̂kα all have the same signs, say all > 0.

Recall

A±kα = Akα(x±α ) =

 ∑
βεJ

xβ<x±α ,kα<kβ≤n

+
∑
βεJ

xβ>x±α ,kα>kβ≥1

 |σβ|

+



 ∑
kβ=kα

βεJ(u),xβ<x±α

+
∑
kβ=kα

βεJ(v),xβ>x±α

 |σβ| if pkα(x±α ) < 0

 ∑
kβ=kα

βεJ(v),xβ<x±α

+
∑
kβ=kα

βεJ(u),xβ>x±α

 |σβ| if pkα(x±α ) ≥ 0



Since

p±k > 0, A+
kα
− A−kα = |σα|

(if p±k < 0, A+
kα
− A−kα = −|σα|)

⇒ W+
kα

= W−
kα

+ k1|σα| sgn(p−kα)

Next, set

ψ(p̃, p∗, σα) = p̂kα(λ̂kα − ˆ̇xα)− p−kα(λ−kα − ˆ̇xα)

then

ψ(p̂, p∗, 0) = 0 (∵ v̂ = v−, p̂i = p−i ,
ˆ̇λkα = λ−kα)

ψ(0, 0, σα) = p̂kα(λ̂kα − ˆ̇xα) = 0



Since p̃ = 0, p∗ = p−kα = 0, v− = u−,

∴ v̂ = Skα
σα (v−) = Skα

σα (u−)
⇒ p̂kα = σα, p̂i = 0, i 6= kα

x̂α = λkα(v−, v̂) = λkα(u−, v̂)

⇒ λ̂kα = λkα(Ŵkα−1 , Ŵkα) = λkα(u−, v̂)

∴ ˆ̇xα = λ̂kα



Next, we compute ψ(0, s,−s).

Since p̃ = 0, p−i = 0, p−kα = s, σα = −s, v̂ = Skα
−s(v−),

v− = Skα
s (u−),

∴ v− = Skα
+s(u−), v̂ = Skα

−s(v−) = Skα
−s ◦ (skα+s(u−)) = u−

p̂i = 0, ˆ̇xα = λkα(v−, v̂) = λk(v−, u−)

On the other hand,

λ−kα = λkα(Wkα−1 ,Wkα)

= λkα(u−, v−)

∴ ψ(0, s,−s) = −s(λ−kα−ˆ̇xα) = −s(λkα(u−, v−)−λkα(u−, v−)) = 0



By the Lemma 3.9,

ψ(p̃, p∗, σα) = O(1)

∑
i 6=kα

|p−i |+ |p
−
kα
| |p−kα + σα|

 |σα|
Consequently, one gets

E 1
α,kα

= W+
kα
|p̂kα | (λ̂kα − ˆ̇xα)−W−

kα
|p−kα | (λ−kα − ˆ̇xα)

= (W+
kα
−W−

kα
) |p−kα | (λ−kα − ˆ̇xα)

+W+
kα

{
|p̂kα | (λ̂kα − ˆ̇xα)− |p−kα | (λ−kα − ˆ̇xα)

}
= −k1|σα| sgn p−kα |p

−
kα
|
p−kα + σα

2
+O

(
|p−kα + σα| |p−kα |+

∑
i 6=kα
|p−i |

)
|σα|



By (3.41) and p̂kα has same sign as p−kα , also |σα| is small:

≤ −k1

2
|σα| |p−kα | |p

−
kα

+σα|+O(1)

|p−kα + σα| (|p−kα |) +
∑
i 6=kα

|p−i |

 |σα|

∴ (F3) E 1
α,kα

≤ −k1

2
|σα| |p−kα | |p

−
kα

+ σα|

+O(1)

|p−kα + σα| (|p−kα |) +
∑
i 6=kα

|p−i |

 |σα|



It follows from (F1) and (F3),

n∑
i=1

E 1
α,i ≤ −k1

2
|σα| |p−kα | |p

−
kα

+ σα| − c k1|σα|
∑
i 6=kα

|p−i |

+O(1)|σα| |p−kα | |p
−
kα

+ σα|
+O(1)

∑
i 6=kα

(|p−i |)|σα|+ O(1) δ |σα|

≤ O(1) δ |σα| if k1 and k2 >> 1



Case 3: p+
kα
< 0 < p−kα .

In this case, we may assume that σα < 0, i.e., the front is a shock,
otherwise, by (16), one may get into a case like Case 1. Then,

p̂i = p+
i , ŵi = w+

i , λ̂i = λ+
i , and |ˆ̇xα − ẋα| < δ.

It follows from (3.4) that

|(p−kα − p+
kα

) + σα| ≤ O(1)

|p−kα | |p−kα + σα|+
∑
i 6=kα

|p−i |

 |σα|
= |(|p−kα |+ |p

+
kα
|)− |σα||

∴
1

2
|σα| ≤ |p−kα |+ |p

+
kα
| ≤ 2|σα|



so,

E 1
α,kα

= W+
kα
|p̂kα |(λ̂kα − ˆ̇xα)−W−kα |p

−
kα
|(λ−kα − ˆ̇xα)

= W+
kα
|p̂kα |

−p−kα
2

+ O(1)|p−kα | (|p−kα |+ |σα|) + O(1)
∑
i 6=kα

|p−i |


−W−kα |p

−
kα
|

(
−
p−kα + σα

2
+ O(1)|p−kα + σα| (|p−kα |+ |σα|)

+O(1)
∑
i 6=kα

|p−i |





Note that,

W+
kα
|p̂kα |

(
−
p−kα
2

)
−W−

kα
|p−kα |

(
−
p−kα + σα

2

)
= W+

kα
(−|p̂kα |)

p−kα
2

+ W−
kα
|p−kα |

p−kα + σα − p̂kα
2

+ W−
kα
|p−kα |

p̂kα
2

=
(W+

kα
+ W−

kα
)

2
(−|p̂kα |)|p−kα |+ W−

kα
|p−kα |

p−kα + σα − p̂kα
2



On the other hand, (3.4) ⇒ (∵ p̂kα = p+
kα

)

|p−kα + σα| − |p̂kα | ≤ O(1)

|p−kα | |p−kα + σα|+
∑
i 6=kα

|p−i |

 |σα|

∴ −|p̂kα | ≤ −|p−kα+σα|+O(1)

|p−kα | |p−kα + σα|+
∑
i 6=kα

|p−i |

 |σα|

w+
kα
|p̂kα |

(
−
p−kα
2

)
− w−kα |p

−
kα
|

(
−
p−kα + σα

2

)

≤ −|p−kα | |p
−
kα

+ σα|+ O(1)|p−kα |

|p−kα | |p−kα + σα|+
∑
i 6=kα

|p−i |

 |σα|



(F4) ∴ E 1
α,kα

≤ −|p−kα | |p
−
kα

+ σα|+ O(1)(|p−kα + σα| |p−kα | (|p−kα |+ |σα|))

+O(1)(|p̂kα |+ |p−kα |)
∑
i 6=kα

|p−i |

+O(1)|p−kα |

|p−kα | |p−kα + σα|+
∑
i 6=kα

|p−i |

 |σα|
≤ −|p−kα | |p

−
kα

+ σα|+ O(1)

|p−kα | |p−kα + σα|+
∑
i 6=kα

|p−i |

 |σα|



It follows from (F1) and (F4) that

n∑
i=1

E 1
α,i

≤ −|p−kα | |p
−
kα

+ σα| − c k1

∑
i 6=kα

|p−i |

 |σα|
+O(1) δ|σα|2 + O(1)

|p−kα | (|p−kα + σα|) +
∑
i 6=kα

|p−i |

 |σα|
≤ O(1) δ |σα| we are done



Case 4: All other cases:

All the other cases can be reduced to the one of three cases above.
So the proof is accomplished.

As a direct consequence of Theorem 3.8, we have the following
existence of a semigroup of solutions:

Theorem 3.9 Existence of a Semigroup of solutions

Consider D = closure u ∈ L1(R;Rn), u is piecewise constant,
G (u) < δ0.



Then ∃ δ0 > 0 with the following property: Let ū ∈ D, and uδ be
δ− approximate solution of the Cauchy problem{

∂t u + ∂x f (u) = 0
u(x , t = 0) = ū(x)

Then as δ → 0, uδ converges to unique limit solution
u : [0,∞) 7→ D. The map (ū, t) 7→ u(·, t) = St ū is a uniformly
Lapselitz continuous semigroup. Indeed, ∃ constant C and C 1 such
that ∀ ū, v̄ ,∈ D, s, t ≥ 0, one has

S0 ū = ū, Ss ◦ (st ū) = Ss+t ū

||st ū − ss v̄ ||L1 ≤ c ||ū − v̄ ||L1 + c1|t − s|

Proof is trivial.


