
Chapter 2. General Scalar
Conservation Laws
§2.1 Convex Conservation Laws

Consider the general conservation laws

∂t u + ∂x f (u) = 0 (2.1)

where f εC 2. In chapter 1 we set f (u) = 1
2 u

2 in the case of
Burgers equation. We say (2.1) is a convex conservation law if
f
′′

(u) > 0 for all u in the consideration.

Note that not all the stationary conservation laws is convex. For

example, ∂t u + ∂x

(
u3

3

)
= 0 with f (u) = u3

3 not be convex.



For the general convex conservation laws, we have all similar
results as in Burgers equation, such as existence and uniqueness of
the entropy weak solution, L1-contraction principle, large time
asymptotic behaviour of solutions with decaying order in time (for
periodic initial data, bounded and integrable initial data
u0 ε L

1 ∩ L∞, and in the case limx→±∞ u0(x) = u±), and existence
of profile (N-wave). We omit the proofs of these properties and
leave them to readers as exercises since their proofs in convex
conservation laws are as same as in the Burgers equation.

Theorem 2.1

All the theory we derived for Burgers equations goes to the scalar
convex conservation laws.



§2.2 General Conservation Laws (Kruzkov’s theory)

Consider the general conservation laws{
∂t u + ∂x f (u) = 0
u(x , t = 0) = u0(x)

(2.2)

where f εC 1 needs not be convex, and initial data u0(x) ε L∞.
Before considering all properties of solutions, we need to impose
stronger definition than in convex conservation laws which is in the
sense of distribution because the solution may fail to satisfy the
entropy condition in general. We give a definition of weak solution
of general scalar conservation laws as below.



Definition 2.1

A bounded function u(x , t) ε L∞(R1 × [0,T ]) is called an entropy
weak solution to (2.2) if

(a) for all smooth nonnegative test function
ϕ εC∞0 (R1 × [0,T ]), ϕ ≥ 0, one has∫ ∫

|u(x , t)−k |∂t ϕ+sgn(u(x , t)−k)(f (u(x , t))−f (k))∂x ϕ dx dt ≥ 0

for any constant k.



(b) there is a measure zero set E0 ⊆ [0,T ] such that∫
|x |≤R |u(x , t)|dx is well defined for t ε [0,T ]\E0 and

lim
t→0,t ε [0,T ]\E0

∫
|x |≤R

|u(x , t)− u0(x)|dx = 0

Remark:

1. We can see clearly that if u is an entropy weak solution, then u
must be a weak solution in the sense of distribution, by taking k to
be large or small.

2. This formulation comes from entropy - entropy flux
consideration stated as below.



Definition 2.2 We say (η(u), q(u)) is an entropy - entropy flux
pairs if

∇q(u) = ∇ η(u) · ∇ f (u).

This definition does naturally come from the transformation.
Suppose u(x , t) is a smooth solution of general scalar conservation
law of (2.2), then ∂t u +∇ f (u) · ∂x u = 0. Multiply ∇ η(u) on
both sides and from the identity in Definition 2.2, we get
∂t η(u) + ∂x q(u) = 0.

In particular, if η is a convex function, then we call (η, q) a convex
entropy - entropy flux pair.



For weak solutions of (2.2), we claim that ∂t η(u) + ∂x q(u) ≤ 0.
Assuming the claim, let η(u) be a regularization of |u − k | and k
be any fixed constant, one deduces that u satisfies (a) in Definition
2.1. To prove the claim, consider the viscous conservation laws
∂t u + ∂x f (u) = ε ∂2

x u, ε > 0. Let (η, q) be a convex entropy -
entropy flux pairs, ∇2 η(u) ≥ 0. Multiply ∇ η(u) on both sides, we
have

∂t η(u) + ∂x q(u) = ε∇ η(u)∂2
x u

= ε ∂x(∇ η(u)∂x u)− ε∇2 η(u)(∂x u)2

≤ ε ∂2
x η(u)

let ε→ 0, the viscous limit solution gives our claim.

For the general scalar conservation laws, we will adapt Kruzkov’s
result on the well-posedness of the Cauchy problem.



Theorem 2.2 Assume that f εC 1(R1), u0 ε L
∞ (R1), then there

exists a unique entropy weak solution to the problem (2.2).
Furthermore, if u(x , t), v(x , t) are entropy weak solutions to (2.2)
with initial data u0(x), v0(x) ε L∞(R1), respectively, then∫

|x |≤R
|u(x , t)− v(x , t)|dx ≤

∫
|x |≤R+Nt

|u0(x)− v0(x)|dx (2.3)

for t ε[0,T ]\E0. Here
M = max

x εR1{|u0(x)|, |v0(x)|}, N = max|u|≤M |f
′
(u)|, and E0 is

the same as in Definition 2.1.



Remark: In the proof, we will show the existence and the validity
of (2.3) for smooth, compactly supported initial data. We can see
that (2.3) is much more than the uniqueness. It also allows us to
approximate the solution with “bad” initial data by solutions with
“good” initial data. Actually, the proof also works for scalar
equations

∂tu +
∑

1≤α≤d
∂xαf

α(x , t, u) = 0, x εRd ,

with d ≥ 2.

Proof: Without loss of generality, we can assume u0 εC
∞
0 (R1). To

make the proof easy to follow, we will separate it into several steps.



Step 1: Approximate solutions

We consider {
∂tu

ε + ∂x f (uε) = ε ∂2
x u

ε,
uε(x , t = 0) = u0(x).

(2.4)

For fixed ε > 0, the maximum principle implies
||uε(x , t)||

L∞(R1
)
≤ ||u0(x)||

L∞(R1
)
≤ M, which is enough to

ensure the global (for t) existence of the smooth solution, i.e.

uε εC∞([0,T ]× R1), ∀ T > 0.



Now we assume that there is a subsequence {εj}∞j=1, εj → 0 as

j → +∞, such that uεj (x , t)→ u0(x , t), a.e., which will be proved
in Step 2. Then here we show u0 is an entropy weak solution to
(2.2).

Let (η(u), q(u)) be any convex entropy - entropy flux pair, then
multiply the equation (2.4) by ∇ η(uε). By the definition of
entropy - entropy flux, i.e. ∇ q = ∇ η · ∇ f , we obtain

∂t η(uε) + ∂x q(uε)

= ε∇ η(uε)uεxx

= ε ∂x(∇ η(uε) · ∂x uε)− ε∇2 η(uε) · (∂x uε)2

≤ ε ∂x(∇ η(uε) · ∂x uε).



Then multiply the above inequality by any
ϕ εC∞0 ([0,T ]× R1), ϕ ≥ 0, and integrate by parts to give

−
∫ ∫

Q
(η(uε) · ∂t ϕ+ q(uε)∂x ϕ)dx dt

≤ −ε
∫ ∫

Q
∇ η(uε) · ∂x uε · ∂x ϕ dx dt

= R.H.S .,

where Q = R1 × (0,T ).

Now we prove R.H.S .→ 0 as ε→ 0. Multiply (2.4) by uε and
then integrate over Q to give

1

2
· d
dt

∫
R1
|uε(x , t)|2dx +

∫
R1

uε(x , t)∂x f (uε)dx = −ε
∫
R

|∂x uε(x , t)|2dx ,



The second term on the left hand side is zero. Then integrate the
above equation over (0,T ) to give∫

R1
|uε(x , t)|2dx + ε

∫ ∫
Q
|∂x uε(x , t)|2dx dt

=

∫
R1

|uε(x , t = 0)|2dx =

∫
R1

|u0(x)|2dx .

Therefore the standard energy estimate shows that

ε

∫ ∫
Q
|∂x uε(x , t)|2dx dt ≤ M1 < +∞, M1 =

∫
R1

|u0(x)|2dx .



Then

ε

∣∣∣∣∫ ∫
Q
∇ η(uε) · ∂x uε · ∂x φ dx dt

∣∣∣∣
≤ C

√
ε ·
(
ε

∫ ∫
Q
|∂x uε|2dx dt

) 1
2
(∫ ∫

Q
|∂x φ|2dx dt

) 1
2

≤ C
√
ε ·M1

1
2

(∫ ∫
Q
|∂x φ|2dx dt

) 1
2

→ 0, as ε→ 0+.

Hence, if we let εj → 0, then R.H.S .→ 0, and by Dominated
Convergence Theorem,∫ ∫

Q
(η(u0)∂t φ+ q(u0)∂x φ)dx dt ≥ 0, (2.5)

here we have used that |∂t φ|, |∂x φ| are bounded and compactly
supported.



In the above, we have assumed η εC 2. When (η(u), q(u)) is only
in W 1,∞(R1), we can approximate (η(u), q(u)) by C 2 convex
entropy - entropy flux pairs. Then (2.5) holds true for any convex
(η, q)εW 1,∞(R1). In particular, we take
η(u) = |u − k|, q(u) = sign(u − k) · (f (u)− f (k)). This verifies
that u0 is the entropy weak solution.

Step 2: To prove uεj (x , t)→ u0(x , t) a.e.

Actually, we cannot expect |∂x uε(x , t)|L∞(R1) to be finite. But we

can obtain the boundedness of uε(x , t) in BV (R1), i.e. the
L1-estimate of ∂x u

ε(x , t).



Set P = ∂x u
ε(x , t), then{

∂t P + ∂x(f
′
(uε)P) = ε ∂2

x P
P(x , t = 0) = P0(x) = ∂x u0(x)

Claim: ∂t |P|+ ∂x(f
′
(uε)|P|) ≤ ε ∂2

x |P|.

The proof of the Claim is just the same as what we have done in
§1.8 for Burgers equation. We will omit the proof here.

From the Claim,∫
R1

|P|dx ≤
∫
R1

|P0|dx ≤ M2 < +∞,

i.e. TV uε(·, t) =
∫
R1 |∂x uε(·, t)|dx ≤ M2 < +∞.



By Helley principle, there exists a subsequence {εj}∞j=1, εj → 0 as

j → +∞, such that uεj → u0, a.e. (by a similar argument and for
the Burger’s equation).

Then we go to the next step to give the important L1- contraction
property.

Step 3: Kruzkov’s stability estimate (doubling variable argument)

Proposition 2.1 Let u(x , t), v(x , t) be two entropy weak solution
to (2.2) with initial data u0, v0 ε L

∞(R1); respectively. Assume
further that |u(x , t)| ≤ M, |v(x , t)| ≤ M, for some M < +∞, then∫

St

|u(x , t)− v(x , t)|dx dt ≤
∫
Sτ

|u(x , τ)− v(x , τ)|dx ,



where
St = {(x , t)| |x | ≤ R},

Sτ = {(x , τ)| |x | ≤ R + N(t − τ)},
N = max

|u|≤M
|f ′(u)|,

and t, τ /∈ Eu
0 ∪ E v

0 , t > τ .

Remark: The key idea of the proof of the Proposition is based on
the symmetry of the entropy η∗(u) = |u − k|.

 

Figure 2.1 

𝒔 = 𝒍 

𝒙 = 𝑹 + 𝑵(𝒕 − 𝒔) 

s 

𝒔 = 𝝉 

𝒙 = −𝑹 −𝑵(𝒕 − 𝒔) 



Proof of the Proposition: (doubling variable argument)

Step 3.1 By definition, u(x , t) is an entropy weak solution, then
∀ϕ εC∞0 (Q), ϕ ≥ 0,

∫ ∫
Q

(|u(x, t)− k| ∂tφ(x, t) + sign(u(x, t)− k)(f (u(x, t))− f (k)) ∂xφ(x, t))dx dt ≥ 0,

for all k εR1.
Now for any positive C∞ function ψ(x , t, y , τ), we choose

φ(x , t) = ψ(x , t, y , τ), k = k(y , τ) = v(y , τ),

for any fixed (y , τ)εQ. Here we view (y , τ) as parameters. Then
integrate the above inequality with respect to (y , τ) over Q to get



∫∫∫∫
Q×Q

(|u(x , t)− v(y , τ)|∂tψ(x , t, y , τ) + sign(u(x , t)− v(y , τ)) ·

(f (u(x , t))− f (v(y , τ))) ∂xψ(x , t, y , τ)) dx dt dy dτ

≥ 0 (2.6)

Similarly, v(y , τ) is also an entropy weak solution. Then for fixed
(x , t)εQ, we choose

φ(y , τ) = ψ(x , t, y , τ), k = k(x , t) = u(x , t).



Then we obtain∫∫∫∫
Q×Q

(|v(y , τ)− u(x , t)| ∂τψ(x , t, y , τ) + sign(v(y , τ)− u(x , t)) ·

(f (v(y , τ))− f (u(x , t))) ∂yψ(x , t, y , τ)) dy dτ dx dt

≥ 0 (2.7)

From (2.6) and (2.7), we immediately get a symmetric inequality∫∫∫∫
Q×Q

(|u(x , t)− v(y , τ)|(∂t + ∂τ )ψ(x , t, y , τ) + sign(u(x , t)− v(y , τ)) ·

(f (u(x , t))− f (v(y , τ))) (∂x + ∂y )ψ(x , t, y , τ)) dx dt dy dτ

≥ 0 (2.8)



Step 3.2 Choice of the test functions

Let φ(x , t) εC∞0 (Q), φ ≥ 0. For any h > 0, define

ψ(x , t, y , τ) = φ

(
x + y

2
,
t + τ

2

)
δh(x − y) δh(t − τ).

where δh(x) = 1
hδ( xh ) is the positive approximation to the Dirac

mass at the origin and δ εC∞0 (R1),
∫
R1 δ(x)dx = 1, the support

of δ is [-1,1].

Then

(∂t + ∂τ )ψ(x , t, y , τ) = ∂t φ(·, ·)δh(x − y)δh(t − τ)

(∂x + ∂y )ψ(x , t, y , τ) = ∂x φ(·, ·)δh(x − y)δh(t − τ),

where (·, ·) =
( x+y

2 , t+τ
2

)
. Substitute them into (2.8) to give



0 ≤
∫∫∫∫

Q×Q
|u(x , t)− v(y , τ)|∂tφ(·, ·)δh(x − y)δh(t − τ)dx dt dy dτ

+

∫∫∫∫
Q×Q

sign(u(x , t)− v(y , τ)) · (f (u(x , t))− f (v(y , τ))) ·

∂xφ(·, ·)δh(x − y)δh(t − τ)dx dt dy dτ

≡ I1 + I2.

Now we want to prove

I1 →
∫∫

Q

|u(x , t)− v(x , t)|∂tφ(x , t)dx dt,

I2 →
∫∫

Q

sign(u(x , t)− v(x , t)) · (f (u(x , t))− f (v(x , t)))∂xφ(x , t)dx dt,

as h→ 0+.



The two quantities are in the same form, so we only need to work
with one of them, say I1.

Note that
∫∫

Qδh(x − y)δh(t − τ)dy dτ = 1, then

I1 −
∫∫

Q

|u(x , t)− v(x , t)|∂tφ(x , t)dx dt

= I1 −
∫∫∫∫

Q×Q
|u(x , t)− v(x , t)|∂tφ(x , t)δh(x − y)δh(t − τ)dx dt dy dτ

=

∫∫∫∫
Q×Q

[(|u(x , t)− v(y , τ)| − |u(x , t)− v(x , t)|) ∂tφ(·, ·)

+|u(x , t)− v(x , t)| · (∂tφ(·, ·)− ∂tφ(x , t))]

·δh(x − y)δh(t − τ)dx dt dy dτ

≡ J1 + J2.



Then

|J1| ≤
∫∫∫∫

Q×Q
|v(x , t)− v(y , τ)| |∂tφ(·, ·)| · δh(x − y)δh(t − τ)dx dt dy dτ

=

∫∫∫∫
Q×[−1,1]×[0,1]

|v(x , t)− v(x − hy , t − hτ)|

·
∣∣∣∣∂tφ(x − 1

2
hy , t − h

2
τ

)∣∣∣∣ · δ(y) δ(τ) dx dt dy dτ

≡ J0(v).

Let U be a compact neighborhood of the support of φ. Then for h
sufficiently small, the above integral is taken on a bounded set
U × [−1, 1]× [0, 1], and the integrant is also bounded by a
bounded function

2M · ||∂t φ(·, ·)||L∞ · δ(y) δ(τ).



If v is continuous, then |v(x , t)− v(x − hy , t − hτ)| → 0 as
h→ 0+. Hence the dominated convergence theorem shows that
J0(v)→ 0 as h→ 0+. If v is not continuous, then for any small
positive constant β, we can choose a continuous function w , such
that ||v − w ||L1(Q) ≤ β.

Then

J0(v) ≤ J0(v − w) + J0(w) ≤ 2 · ||∂t φ(·, ·)||L∞ · β + J0(w)

→ 2 · ||∂t φ(·, ·)||L∞(Q)β as h→ 0+ .

Since β is arbitrarily small, we get J0(v)→ 0 as h→ 0+, which
implies |J1| → 0 as h→ 0+.



Also note that ∂t φ(x , t) is Lipschitz continuous in t and x and
with compact support. Then as h small enough,

|J2| ≤ 2M

∫∫∫∫
U×[−1,1]×[0,1]

∣∣∣∣∂tφ(x − h

2
y , t − h

2
τ)− ∂tφ(x , t)

∣∣∣∣
·δ(y)δ(τ) dx dt dy dτ

≤ 2M · C · h2

∫∫∫∫
U×[−1,1]×[0,1]

(|y |+ |τ |)δ(y)δ(τ) dx dt dy dτ

≤ 2M · C · h2 ·meas(U)→ 0 as h→ 0+.

Therefore,

I1 →
∫ ∫

Q
|u(x , t)− v(x , t)| ∂tφ(x , t)dx dt as h→ 0+ .



Similarly,

I2 →
∫ ∫

Q
sign(u(x , t)−v(x , t))·(f (u(x , t))−f (v(x , t))) ∂xφ(x , t)dx dt as h→ 0+ .

In conclusion, we obtain∫ ∫
Q

(|u(x , t)− v(x , t)| ∂tφ(x , t)dx dt + sign(u(x , t)− v(x , t)) ·

(f (u(x , t))− f (v(x , t))) ∂xφ(x , t)dx dt ≥ 0 (2.9)



Step 3.3 L1- Contraction

Let δh(x) be the standard Friedrichs mollifier. Define

Sh(x) =

∫ χ

−∞
δh(y)dy .

Then Sh(x) satisfies

(1) Sh(x) ≡ 0, x ≤ −h;
(2) Sh(x) ≡ 1, x ≥ h;
(3) S ′h(x) = δh(x) ≥ 0, 0 ≤ Sh(x) ≤ 1.
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Now for any fixed t, τ ε[0,T ]\(E 0
u ∪ E 0

v ), t > τ , we define for
τ < s < t

χε(x , s) = 1− Sε(|x | − R + N(s − t) + ε)

Φε
h(x , s) = (Sh(s − τ)− Sh(s − t))χε(x , s).
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Then, it is easy to get

∂s Φε
h(x , s)

= −N(Sh(s − τ)− Sh(s − t))δε(|x | − R + N(s − t) + ε)

+(δh(s − τ)− δh(s − t))χε(x , s), (2.10)

∂xΦε
h(x , s)

= (Sh(s − τ)− Sh(s − t))(−δε(|x | − R + N(s − t) + ε) signx)

(2.11)
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Substitute (2.10), (2.11) into (2.9) to give

0 ≤
∫∫
|u(x , s)− v(x , s)|(δh(s − τ)− δh(s − t))χε(x , s)dx ds

+

∫∫
[|u(x , s)− v(x , s)|(−N)(Sh(s − τ)− Sh(s − t))

δε(|x | − R + N(s − t) + ε)

+sign(u(x , s)− v(x , s)) (f (u(x , s))− f (v(x , s))) ·
(Sh(s − τ)− Sh(s − t))(−signx)δε(|x | − R + N(s − t) + ε)]dx ds

≡ I1 + I2.



It is clear that

I2

=

∫∫
|u(x , s)− v(x , s)|(Sh(s − τ)− Sh(s − t))δε(|x | − R + N(s − t) + ε)[

−N − (signx)
f (u(x , s))− f (v(x , s))

u(x , s)− v(x , s)

]
dx ds

≤ 0.

where we have used the fact N = max|u|≤M |f
′
(u)|.

Therefore, it yields

I1 =

∫∫
|u(x , s)− v(x , s)|(δh(s − τ)− δh(s − t))χε(x , s)dx ds

≥ 0.



That is ∫ ∫
|u(x , s)− v(x , s)|δh(s − t)χε(x , s)dx ds

≤
∫ ∫

|u(x , s)− v(x , s)|δh(s − τ)χε(x , s)dx ds.

Let h, ε→ 0+ to reduce∫
|x |≤R

|u(x , t)− v(x , t)|dx ≤
∫
|x |≤R+N(t−τ)

|u(x , τ)− v(x , τ)|dx .

(2.12)



After let τ → 0+, we obtain∫
|x |≤R

|u(x , t)− v(x , t)|dx ≤
∫
|x |≤R+Nt

|u0(x)− v0(x)|dx . (2.13)

This is L1-Contraction of weak entropy solutions of (2.2).
Certainly, uniqueness of the weak entropy solutions can be deduced
from L1-Contraction.

Remark: In the stability argument for (2.12), there was no
requirement on the weak entropy solution except that u is bounded
measurable. However, for the existence, we assume u0 εC

∞
0 (R1).

For general L∞ initial data, one can use the L1-contraction to
approximate u0 by a sequence un0 εC

∞
0 (R1).



§2.3 Existence by Weak Convergence Method

As shown in previous sections, when one deals with existence of
weak solutions of conservation laws or other PDEs, the usual
strategy is to construct approximate solutions for them. Then a
priori estimates and compactness discussions for approximate
solutions are crucial parts. Certainly, strong convergence is always
good thing. However, strong convergence is not always easy to
achieve. In most cases, we only have weak convergence or weak - ∗
convergence in Lp-space (1 ≤ p ≤ ∞). What we are concerned
with is whether weak or weak - ∗ convergence guarantees the
global existence of weak solutions. The answer is decidedly
negative in general. We give some examples to illustrate the point.



Consider a scalar equation:{
∂t u + ∂x(a(x , t)u) = ε ∂2

x u, x εR1, t ε(0,T ),
u(x , t = 0) = u0(x)

(2.14)

where a(x , t) εC 1(R1 × [0,T ]) for instance. Then maximum
principle gives us an estimate on the approximate solution uε, that
is,

|uε|
L∞(R1×(0,T ))

≤ C (T , u0).

We have
uε
∗
⇀ u0 in L∞(R1 × (0,T )).

Then it is easy to see that u0(x , t) is a weak solution of the
following equation:{

∂t u + ∂x(a(x , t)u) = 0,
u(x , t = 0) = u0(x).



Indeed, since∫∫
(uε ∂tϕ+ a(x , t)uε ∂xϕ)dx dt = −ε

∫∫
uε ∂2

xϕ dx dt,

∀ϕ εC∞0 (R1 × (0,T )),

as ε→ 0+, we get it. This argument works just because a(x , t)u is
linear. Now, for the equation{

∂t u + ∂x f (u) = ε ∂2
x u,

u(x , t = 0) = u0(x),
(2.15)



We still have
|uε|L∞ ≤ C

due to the maximum principle. Then

uε
∗
⇀ u0 in L∞(R1 × (0,T )).

The question is whether u0 be a solution to (2.15) with ε = 0? Or,
under what condition, we can obtain that there exists a
subsequence {uεj} of {uε} such that

f (uεj )→ f (u0) (2.16)

in the sense of distribution?



Some weak convergence methods are introduced to deal with this
problem. The basic idea of weak convergence method is to get
(2.16) without touching hard estimates. Compensated
compactness is one kind of weak convergence methods in essence,
which was introduced by L. Tartar and F. Murat in the end of
1970’s. As we shall see, it is an efficient tool provided that the
system has a sufficiently large number of entropies. This is the
case for a scalar conservation law and also for 2× 2 systems. On
the other hand, since it needs more entropies, compensated
compactness method has its limitation for more extensive
applications for general systems.



In this section, we first give some preliminaries in §2.3.1, including
some well-known inequalities and compactness theorems.
Subsection §2.3.2 is about Young measures. Then we prove div-curl
Lemma in §2.3.3 and finally, in §2.3.4 we give applications of the
compensated compactness method to general conservation laws.

§2.3.1 Preliminaries

In this subsection, we first give some well-known facts, then we
give a proof of two theorems on compactness of measures.



Fact 1. Gargliardo - Nirenberg - Sobolev inequality

Let 1 ≤ q < n, q∗ = nq
n−q . Then

||f ||Lq∗ (Rn
) ≤ C ||∇f ||Lq(Rn

).

Suppose Ω < Rn be a bounded open domain. Then we have

Fact 2. If f εW 1,q(Ω), then

||f ||Lp(Ω) ≤ C (Ω, n, p)||f ||W 1,q(Ω), 1 ≤ p ≤ q∗.

Fact 3. If q > n, then W 1,q(Ω) imbeds into C (Ω) compactly.



Fact 4. (Rellich’s compactness theorem)

Let {fk}∞k=1 be a bounded sequence in W 1,q(Ω), then {fk}∞k=1 is
precompact in Lp(Ω), 1 ≤ p < q∗.

Fact 5. (Weak compactness of Measures)

Let {µk} be a bounded sequence in M(Ω) (space of bounded
measures). Then there exists a subsequence {µkj} such that

µkj ⇀ µ in M(Ω),

i.e. ∫
Ω
ϕ dµk →

∫
Ω
ϕ dµ, ∀ϕ εC0(Ω).



Theorem 2.3 (Compactness of Measures)

Assume that {µk}∞k=1 is bounded in M(Ω). Then {µk}∞k=1 is
compact in W−1,q(Ω), 1 ≤ q < 1∗ = n

n−1 .

(W−1,q(Ω) is the dual space of W 1,q′

0 , 1
q + 1

q′ = 1).

Proof:

Step 1. By the weak compactness of measures (fact 5), there must
be a subsequence of {µk}∞k=1, which we still denote by itself, such
that

µk ⇀ µ in M(Ω),

i.e.
〈µk , φ〉 → 〈µ, φ〉, ∀φ εC0(Ω). (2.17)



Step 2. We need to prove

||µk − µ||W−1,q(Ω) → 0 as k → +∞ (2.18)

By definition of the norm of W−1,q(Ω), one has

||µk − µ||W−1,q(Ω) = sup
φ εB1⊂W 1,q′

0

|〈µk − µ, φ〉|,

where B1 is the unit ball in W 1,q′

0 .

Since q < 1∗ = n
n−1 , q′ > n, it concludes that B1 ⊂ W 1,q′

0 is
compact in C0(Ω). Thus, for any φ εB1, one has from (2.17)

〈µk , φ〉 → 〈µ, φ〉 as k → +∞



However, this is not enough to get (2.18), which needs the

convergence is uniform on φ εB1. Note that B1 ⊂ W 1,q′

0 (Ω) is
compact in C0(Ω), so for any ε > 0, there exists a ε-net, that is,

there exists a N(ε) and a sequence {Φk}
N(ε)
k=1 ⊂ C0(Ω) such that

min
1≤k≤N(ε)

||φ− φk ||W 1,q′ (Ω) ≤ ε, ∀φ εB1 ⊂ W 1,q′

0 (Ω). (2.19)

Then, for any φ εB1, we first choose a function
φi εC0(Ω)(1 ≤ i ≤ N(ε)) satisfying (2.19), then choose K > 0
large enough such that when k > K

|〈µk − µ, φi 〉| ≤ ε.



Consequently,

|〈µk − µ, φ〉| ≤ |〈µk − µ, φ− φi 〉|+ |〈µk − µ, φi 〉|
≤ 2 ε limk→∞|µk |+ ε = (2M + 1)ε,

where M is the bound of {µk}. Due to the arbitrary smallness of
ε, we have

sup
φ εB1⊂W 1,q′

0

|〈µk − µ, φ〉| → 0 as k → +∞.

This proves (2.18) and the proof of the theorem is finished.



Theorem 2.4

Assume that

(1) {fk}∞k=1 is bounded in W−1,p(Ω), p > 2;
(2) fk = gk + hk . {gk}∞k=1 is bounded in M(Ω), and {hk}∞k=1 is
precompact in W−1,2(Ω).

Then {fk}∞k=1 is precompact in W−1,2(Ω).

Proof: Consider {
−∆uk = fk , x εΩ,
uk |∂ Ω = 0.

(2.20)



By standard elliptic regularity results, one has uk εW
1,p(Ω).

Decompose uk = wk + vk such that{
−∆wk = gk , x εΩ,
wk |∂ Ω = 0.

{
−∆vk = hk , x εΩ,
vk |∂ Ω = 0.



Since {gk} is precompact in W−1,q(Ω) for
1 ≤ q < 1∗ = n

n−1 , {wk} is precompact in W 1,q(Ω) for 1 < q < 1∗.

It is also clear that {vk} is precompact in W 1,2(Ω). Therefore, one
has that {uk} is precompact in W 1,q(Ω), 1 < q < 1∗ = n

n−1 .

From (2.20), {fk} is precompact in W−1,q(Ω). Noting that
W−1,p(Ω) ⊂ W−1,2(Ω) ⊂ W−1,q for q < 2 < p, and {fk} is
uniformly bounded in W−1,p(Ω) by assumption, one easily get {fk}
is precompact in W−1,2(Ω) through interpolation. Note that one
has used the fact that p′ < 2 < q′ ⇒W 1,q′ ⊂W 1,2 ⊂W 1,p′ →
W−1,p ⊂W−1,2 ⊂W−1,q.



§2.3.2 Young measure

In most of weak convergence methods in PDE, usually we take the
approximate sequence and weak convergent subsequence argument
to find a weak limit, and try to prove the weak limit is the solution
to our problem. But the main difficulty which we deal with is the
convergency of the nonlinear effects, that is , the weak
convergency cannot apply to the nonlinear composition of the
sequences in general. So we rise the following question:

If the sequence fk is bounded in L∞(Ω;Rm), is there a subsequence
fkj which is weak - ∗ convergent to f so that, for any continuous
function F εC (Rm), we have F (fkj )→ F (f ) in the sense of
distribution?



One of the accessible way is to work with Young measure. It is
rigorous for such a work because it gives an explicit form of the
weak limit provided that we know the Young measure. Also it is an
efficient tool to study concentration oscillation.

Theorem 2.5 (Existence of Young measure)

Assume that {fk} is uniformly bounded in L∞(Ω;Rm). Then there
exists a subsequence {fkj} of {fk} and for a.e. x εΩ, there is a
Borel probability measure νx on Rm such that for any continuous
function F εC (Rm), we have

F (fkj )→ F̄ (x) =

∫
Rm

F (y) d νx(y) weak - ∗ convergent in L∞(Ω;Rm).



We call d νx(y) is a Young measure associated with {fkj}. First we
give some remarks for Young measure.

Remark:

1. This theorem is nontrivial because it gives a representation of
the weak convergence.

2. If K ⊂ Rm is a compact set such that fk(x) εK for a.e. x εΩ
and all k , then the support of the Young measure supp νx ⊂ K for
a.e. x εΩ.

3. One sufficient condition to give a positive answer to the
question is that νx = δf (x)(y) = δ(y − f (x)). Furthermore, the
following proposition says that we can take limit for a.e. x εΩ.



Proposition 2.2 Suppose the measure dνx is a unit point mass for
a.e. x εΩ, then fkj → f a.e. and F (fkj )→ F (f ) a.e.

Proof: Suppose fkj
∗
⇀ f weak - ∗ in L∞(Ω;Rm). Since dνx is a

unit point mass, dνx(y) = δ(y − g(x)) dy . Take F (y) = y and
apply the Theorem 2.5, we get
fkj

∗
⇀ y =

∫
y δ(y − g(x))dy = g(x), that is g(x) = f (x) and

dνx(y) = δ(y − f (x))dy .

Now let F (y) = |y |2, then

|fkj |
2 ∗
⇀ |y |2 =

∫
|y |2 δ(y − f (x))dy = |f (x)|2. Assume Ω is a

bounded open set and χΩ is the corresponding characteristic
function of Ω. Then χΩε L

1(Ω) and

||fkj ||
2
L2(Ω)

=

∫
Ω
|fkj |

2(x)χΩ(x)dx →
∫

Ω
|f |2(x)χΩ(x)dx = ||f ||2L2(Ω)



From this and the weak - ∗ convergence fkj
∗
⇀ f in L∞(Ω;Rm), we

deduce that ||fkj − f ||
L2(Ω)

→ 0, which implies fkj → f a.e. x εΩ.

Proof of Theorem 2.5: We follow the standard measure theory
to find Young measure by taking projection of some product
measure constructed by the sequence.

Step 1: Define a sequence of measure µk on Ω× Rm by
µk(E ) =

∫
Ω χE (x , fk(x))dx for any measurable subset E of

Ω× Rm.

Then d µk(y) = δ(y − fk(x))dx and |µk |(Ω× Rm) ≤ Ln(Ω) for all
k , where Ln(Ω) is the n-dimensional Lebesgue measure.

By the weak convergence of measures, there is a measure
µ εM(Ω× Rm) such that µkj → µ in M(Ω× Rm).



Step 2: Let σ be the projection of µ onto Ω, i.e.,
σ(E ) = µ(E × Rm) for any measurable set E ⊂ Ω. We claim that
σ is actually an n-dimensional Lebesgue measure, that is,
σ(E ) = Ln(E ) for all E ⊂ Ω measurable.

First, for any open set V ⊂ Ω, by the weak convergence of
measure, we get

σ(V ) = µ(V × Rm) ≤ lim inf
kj→∞

µkj (V × Rm) ≤ Ln(V )

hence σ ≤ Ln.

Conversely, since {fkj} is uniformly bounded in L∞(Ω;Rm), there is
an R > 0 such that
supp µk = {(x , t)εΩ× Rm| d µk

d(x ,y) (x , y) 6= 0} ⊂ Ω× B(0,R). Then
for any compact set K ⊂ Ω,



σ(K ) = µ(K × Rm) = µ(K × B(0,R)) ≥ lim sup
kj→∞

µkj (K × B(0,R)) = Ln(K )

hence σ ≥ Ln. This proves the claim.

Step 3: By slice measure theorem, we can find a Borel probability
measure νx on Rm such that∫

G (x , y)d µ(x , y) =

∫
Ω

∫
Rm

G (x , y)dνx(y)dσ (2.21)

for all continuous bounded function G on Ω× Rm. We state the
slice measure theorem as follows.



Theorem 2.6 (Slice measure theorem)

Let µ be a finite Radon measure on Rm+n. Let σ be the canonical
projection of µ onto Rn. Then for a.e. x εRn, there exists Radon
probability measure νx on Rm such that

(i) the function x 7→
∫
Rm G (x , y)dνx(y) is measurable with respect

to σ.

(ii)
∫
Rm+n G (x , y)dµ =

∫
Rn

∫
Rm G (x , y)dνx(y)dσ.

This theorem is well-known in measure theory and we omit the
proof.



Step 4: The only thing to do is that the Borel probability measure
νx found in Step 3 is the measure we required. For any
ξ εC0(Ω),F εC0(Rm), we want to prove∫
ξ(x)F (fkj )d σ →

∫
Rn ξ(x)F (x)d σ.

In (2.21), we choose G (x , y) = ξ(x)F (y), then

lim
kj→∞

∫
Ω
ξ(x)F (fkj )dσ = lim

kj→∞

∫
Ω
ξ(x)F (y)dµkj (x , y)

=

∫
Ω
ξ(x)F (y)dµ(x , y)

=

∫
Ω

∫
Rm

ξ(x)F (y)dνx(y) dσ

=

∫
Ω
ξ(x)F (x)dσ

therefore F (fkj )
∗
⇀ F in L∞(Ω;Rm).



§2.3.3 Div-Curl Lemma

In this subsection, we consider the question as follows:

If {vk}, {wk} are two bounded sequences in L2(Ω;Rm). Assume
that vk ⇀ v in L2,wk ⇀ w in L2. When vk · wk converges to v · w
in the sense of distribution?

In most of previous analysis we may assume much stronger
conditions on convergence, such as D vk converges weakly in L2.
Div-Curl lemma gives less conditions on the derivatives of the
sequence, which is convenient to checking the convergence in
various problems such as conservation laws and fluid mechanics.



Theorem 2.7 Let Ω be a bounded set in Rn. {vk}, {wk} are
uniformly bounded sequences in L2(Ω;Rn) and vk ⇀ v in
L2,wk ⇀ w in L2. Assume further that

(i) div vk =
∑n

i=1 ∂xi v
(i)
k is precompact in W−1,2

(ii) curl wk is precompact in W−1,2, (curlwk)ij = ∂xi w
(j)
k −∂xj w

(i)
k .

Then vk · wk → v · w in the sense of distribution.



Proof: The main idea is to separate wk into divergence free part
and exact in gradient part by Hodge decomposition so that we can
apply (i) and (ii) to each term multiplying with vk to show the
convergence.

Step 1: Consider the Laplace equation{
−∆ uk = wk

uk |∂Ω = 0

Since wk is bounded in L2(Ω), from the elliptic regularity with
assuming the boundary ∂ Ω εC 2, we obtain that uk is bounded in
W 2,2 (Ω).



Step 2: Let zk = −div uk be a bounded sequence in
W 1,2 (Ω), yk = wk −∇zk be bounded in L2 (Ω). We claim that yk
is compact in L2 by (ii). Indeed,

y
(i)
k = (−∆ uk)(i) + ∂xi (div uk)

= −∂2
xj
u

(i)
k + ∂xi ∂xj u

(j)
k

= ∂xj (∂xi u
(j)
k − ∂xj u

(i)
k )

= ∂xj (curl uk)ij

from the fact −∆(curl uk) = curl(−∆ uk) = curlwk is precompact
in W−1,2 (Ω), curl uk is compact in W 1,2 (Ω) by the elliptic theory,
hence yk is compact in L2 (Ω). Also zk is compact in L2 (Ω).



Step 3: Taking a subsequence of zk , yk , still denoted as zk , yk
respectively, such that

zk ⇀ z weakly in W 1,2 (Ω), yk → y strongly in L2 (Ω),

uk ⇀ u weakly in W 2,2 (Ω)

then z = −div u and {
−∆ u = w
u|∂ Ω = 0

since all the involved terms are linear. Then we go to prove this
proposition.



Step 4: For any ϕ εC∞0 , we need to show that∫
Ω

(vk · wk)ϕ dx −→
∫

Ω
(v · w)ϕ dx

Now wk = yk +∇zk , substitute into the integral on the left hand
side and then take integration by parts, we get∫

Ω
vk · wk ϕ dx

=

∫
Ω
vk · yk ϕ dx +

∫
Ω
vk · ∇zk ϕ dx

=

∫
Ω
vk · yk ϕ dx −

∫
Ω

div vk zk ϕ dx −
∫

Ω
vk · zk ∇ϕ dx



The first integral
∫

Ω vk · yk ϕ dx converges to
∫

Ω v · y ϕ dx for
yk → y in L2 (Ω) and vk ⇀ v in L2 (Ω). The third integral
−
∫

Ω vk · zk ∇ϕ dx → −
∫

Ω v · z ∇ϕ dx for zk → z in L2 (Ω). The
second integral converges to −

∫
Ω div v z ϕ dx by (i) since

−
∫

Ω
div vk · zk ϕ dx +

∫
Ω

div v · z ϕ dx

=

∫
Ω

(div v − div vk) zk ϕ dx +

∫
Ω

div v(z − zk)ϕ dx

→ 0

and zk ⇀ z weakly in W 1,2(Ω). This finishes the proof of theorem.



§2.3.4 Application to scalar conservation laws

Employing the div-curl lemma, we consider the following scalar
conservation laws

∂t u
ε + ∂x f (uε) = ε ∂2

x u
ε, uε(x , t = 0) = uε0(x), (2.22)

∂t u + ∂x f (u) = 0, u(x , t = 0) = u0(x). (2.23)

Without loss of generality, we assume that

|uε|L∞(K) ≤ C1(K ), ∀ ε� ε0. (2.24)

ε

∫ ∫
K
|∂x uε|2dx dt ≤ C2(K ) (2.25)



where K = R× (0,T ). So we can extract a subsequence {uεk}∞k=1,
such that there exists u0 ε L∞(K ) and

uεk → u0 w- ∗ in L∞(K ) as εk → 0+.

Now we want to know whether u0 is a weak solution to (2.23).

Since uε is a classical solution to (2.22), multiply (2.22) by a test
function and do integration by parts to deduce

∀ϕ εC∞0 (R1 × [0,T ]), suppϕ ⊂ K ,

−
∫ ∫

K
(∂tϕ uε + ∂xϕ f (uε)) dx dt = ε

∫ ∫
K
∂2
xϕ uεdx dt.



Since ∂tϕ, ∂xϕ, ∂
2
xϕ are bounded and have compact support, it

follows that the first term on the left hand side tends to
−
∫∫

K∂tϕ u0, and the right hand side tends to 0 as εk → 0. Hence
u0 is a weak solution iff

∫∫
∂xϕ f (uε)dx dt →

∫∫
∂xϕ f (u0)dx dt,

i.e. u0 is a weak solution iff f (uε)→ f (u0) in the sense of
distribution. In most cases, the question is whether uε → u0 a.e.
(x , t). Therefore, the question becomes whether the Young
measure associated with the weak convergence is a Dirac mass.

Theorem 2.8 Under (2.24) and (2.25), and f εC 1(R1). Then u0,
the weak limit of uεk , is a weak solution.



Proof:

Step 1: Let ν(x ,t)(y) be the Young measure associated with the
weak convergence. Then

F (uε)
w∗−→ F =

∫
F (y)dν(x ,t)(y), ∀F εC (R1).

In particular,

uεk
w∗−→ u =

∫
y dν(x ,t)(y),

f (uεk )
w∗−→ f =

∫
f (y)dν(x ,t)(y).



Step 2: Compensated compactness (Div-Curl lemma)

To apply the div-curl lemma, we will construct two sequences of
functions, namely {vk} and {wk} using (2.22).

First choose vk = (uεk , f (uεk )), then div vk = εk ∂
2
xu

εk .

Let (η(u), q(u)) be a C 2- convex entropy - entropy flux pair, i.e.
∇η · ∇f = ∇q and ∇2η(U) ≥ 0, then
∂tη(uε) + ∂xq(uε) = ε ∂2

xη(uε)− ε∇2η(uε) · (∂xuε)2.



Now we choose wk = (−q(uεk ), η(uεk )), then

curlwk = ∂tη(uεk )− ∂x(−q(uεk ))

= ∂tη + ∂xq

= εk ∂
2
xη(uεk )− εk ∇2η(uεk ) · (∂xuεk )2

≡ fk + hk .

It can be easily seen that {vk} and {wk} are bounded in L2(K ).

Claim: div vk is precompact in W−1,2(K ).

Proof of the claim: ∀ θ εH1
0 (K ) = W 1,2

0 (K ),

〈div vk , θ〉 =

∫ ∫
K

div vk · θ dx dt = εk

∫ ∫
K
∂2
xu

εk θ dx dt.



Integrate by parts to give

|〈div vk , θ〉| = εk

∣∣∣∣∫ ∫
K
∂xu

εk ∂xθ dx dt

∣∣∣∣
≤ εk

(∫ ∫
K

(∂xu
εk )2 dx dt

) 1
2
(∫ ∫

K
(∂xθ)2 dx dt

) 1
2

≤ εk

(∫ ∫
K
|∂xuεk |2 dx dt

) 1
2

· ||θ||H1
0 (K).



Since θ is arbitrary,

||div vk ||W−1,2(K) ≤ εk

(∫ ∫
K
|∂xuεk |2 dx dt

) 1
2

= (εk)
1
2

(
εk

∫ ∫
K
|∂xuεk |2 dx dt

) 1
2

→ 0 as εk → 0.

by (2.25). This means div vk is precompact in W−1,2(K ).



Now we consider wk with curlwk = fk + hk . A similar proof to
that for div vk shows that fk = εk ∂

2
xη(uεk ) is precompact in

W−1,2(K ). And hk = −εk ∇2η(uεk )|∂xuεk |2 is a bounded
sequence in M(K ) since∫ ∫

K
|hk | dx dt ≤ εk C (K )

∫ ∫
K
|∂xuεk |2dx dt ≤ C (K )C2(K ) < +∞.

So by the compactness theorem of measures, curlwk is precompact
in W−1,2(K ) if curlwk is bounded in W−1,q, q > 2. This is true
because ||uεk ||L∞(K) is uniformly bounded which implies that

∂tη(uεk ) + ∂xq(uεk ) is uniformly bounded in W−1,∞(K ).
Therefore, curlwk is uniformly bounded in W−1,q(K ) for any
q > 2.



Then we can use the div-curl lemma and have

vk · wk ⇀ v · w in the sense of distribution

where v = (u0, f ), w = (−q, η). That is

−f (uεk )η(uεk )+uεk q(uεk )→ −f η+u0 q in the sense of distribution
(2.26)

Step 3: Tartar’s commutative relation

By Young measure theorem,

− f (uεk )η(uεk ) + uεk q(uεk ) → −f (y) η(y) + y q(y)

= −f (y) η(y) + y q(y) (2.27)

in the sense of distribution



Comparing (2.26) and (2.27), we have

−f (y) η(y) + y q(y) = −η(y) · f (y) + u0 q(y).

By definition, it reads∫
−f (y) η(y) dν(x ,t)(y) +

∫
y q(y) dν(x ,t)(y)

= −
∫

f (y) dν(x ,t)(y) ·
∫
η(y) dν(x ,t)(y) + u0

∫
q(y) dν(x ,t)(y),

then we rewrite it into a compact form

〈(f − f )η, ν〉+ 〈(y − u0)q, ν〉 = 0,

or 〈(f − f )η + (y − u0)q, ν〉 = 0. (2.28)



Although we have assumed (η, q) εC 2 in deducing (2.28), it
actually holds for general convex (η, q) through approximation
procedure.

The equation (2.28) shows that (f − f )η + (y − u0)q must vanish
on the support of ν(x ,t). But it is not enough to prove the strong
convergence. We will analyze the support of ν(x ,t) in the following
step.

Step 4: Reduction to the Dirac mass by choosing special
entropy-entropy flux.



Case 1: Convex case, i.e. f
′′
> 0.

We fix any (x , t) and denote u = u0(x , t). Then choose

η1(y) = f (y)− f (u)− f
′
(u)(y − u),

so that q1(y) =
∫ y
u (f

′
(ξ))

2
dξ − f

′
(u)(f (y)− f (u)), and

∇2 η = f
′′

(y).

Substitute (η1, q1) into (2.28) to give

0 = 〈(f − f (y))(f (y)− f (u)− f
′
(u)(y − u)

+(y − u)

∫ y

u
(f
′
(ξ))

2
dξ − (y − u)f

′
(u)(f (y)− f (u)), ν〉

≡ 〈I1 + I2 + I3, ν〉. (2.29)



We rewrite I1 as

I1 = (f − f (u) + f (u)− f (y)) · (f (y)− f (u)− f
′
(u)(y − u))

= −(f (u)− f (y))2 + (f − f (u))(f (y)− f (u))

−(f (u)− f (y))f
′
(u)(y − u)− (f − f (u))f

′
(u)(y − u)

= −(f (u)− f (y))2 + (f − f (u))η1(y) + (y − u)f
′
(u)(f (y)− f (u))

= −(f (u)− f (y))2 + (f − f (u))η1(y)− I3.



Then by (2.29),

〈−(f (u)− f (y))2 +(f −f (u))η1(y)+(y−u)

∫ y

u
(f
′
(ξ))

2
dξ, ν〉 = 0.

That is

〈−(f (u)− f (y))2+(y−u)

∫ y

u
(f
′
(ξ))

2
dξ, ν〉+〈(f −f (u))η1, ν〉 = 0.



Noting that

〈−(f (u)− f (y))2 + (y − u)

∫ y

u
(f
′
(ξ))

2
dξ, ν〉 ≥ 0,

which follows from the Cauchy - Schwartz inequality, one has

〈 (f − f (u)) η1(y), ν 〉 ≤ 0, i.e.

(f − f (u)) 〈η1(y), ν〉 ≤ 0.

Since f is convex, we have f ≥ f (u) and η1(y) ≥ 0. Thus either
f − f (u) = 0 or 〈η1(y), ν〉 = 0. In the first possibility, together
with the convexity of f , we must have ν(x ,t) = δ(y − u). In the
second possibility, we also have ν(x ,t) = δ(y − u). Therefore we
always have ν(x ,t) = δ(y − u), and then u0 is a weak solution.



Case 2: f is not convex. Here we will use Kruzkov’s entropy.

Let η(y) = |y − u|, so that q(y) = sign (y − u) (f (y)− f (u)).

Tartar’s commutative relation also holds for this (η, q). And (2.28)
reads

0 = 〈(f − f (y))|y − u|+ |y − u|(f (y)− f (u)), ν〉
= 〈(f − f (y))|y − u|, ν〉
= (f − f (y))〈|y − u|, ν〉.

So either f = f (u) or 〈|y − u|, ν〉 = 0. But in the second
possibility, ν must be a Dirac mass, ν = δ(y − u), and f = f (u)
follows immediately. Therefore we always have f = f (u), and this
implies u0 is a weak solution.

The proof is complete.



We conclude this section and this chapter by the following remarks.

Remarks:

(1) One can see from the previous proof that when f is convex, the
Young measure ν must be a Dirac mass. However, when f is not
convex, we may have f = f (u) but ν is not be a Dirac mass.

(2) One can also see that the existence of entropy is crucial in the
proof. Actually, this method is applicable to 2× 2 systems but only
for some special n × n (n > 2) systems. For general n × n systems,
the existence of entropy is a very difficult problem because the
systems determining the entropy and entropy flux is usually
overdetermined and has no solution.


