Math 2230B, Complex Variables with Applications

1. By differentiating the Maclaurin series representation
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obtain the expansions
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2. By substituting 1 - for z in the expression
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found in Exercise 1, derive the Laurent series representation
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(Compare with Example 2, Sec. 71.)

3. Find the Taylor series for the function
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about the point zp = 2. Then, by differentiating that series term by term,
show that
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4. Show that the function defined by means of the equations

[ (1—=cosz)/z* when z # 0,
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is entire.( See example 1, Sec. 71.)



5. Prove that if

f(2) = % when z # +7/2,
—= when z = +7/2,
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then f is an entire function.

6. In the w plane, integrate the Taylor series expansion (see Example 1, Sec.
64)
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along a contour interior to its circle of convergence from w =1to w = 2
to obtain the representation
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(z—1" (|z—1] <1).

7. Use the result in Exercise 6 to show that if

L
f(z) = z(iqi when z # 1

and f(1)=1, then f is analytic throughout the domain
0<|z] <oo,—m < Argz <.

8. Prove that if f is analytic at 2y and f(2) = f'(z) = ... = f™(2) = 0,
then the function g defined by means of the equations
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9(z) = 7m0 (0)
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is analytic at zg.

9. Consider two series

:Zan (Z—Z())n, SQ(Z):Z(Z_b—nZO)n,

which converge in some annular domain centered at z;. Let C denote
any contour lying in that annulus, and let g(z) be a function which is
continuous on C. Modify the proof of Theorem 1, Sec. 71, which tells us

that
/ 2)S1(z dz—Zan/ (2 — 20)" dz,



to prove

/ 2)S,(z dz—Zb/ Z_ZO) Lz

Conclude from these results that if

S(z)zz (2 — 20)" Zanz—20n+z G
then
/ 2)dz = ch/ (2 — 20)" dz.
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