Math 2230B, Complex Variables with Applications

Use residues to derive the integration formulas in Question 1 and Question
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3. Use a residue and a contour shown in Fig.95, where R > 1, to establish
the integration formula
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4. Use residues to derive the integration formula
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5. Use residues to derive the integration formula
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6. Use residues to find the Cauchy principal values of the improper integrals
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7. Follow the steps below to evaluate the Fresnel integrals, which are impor-
tant in diffraction theory:

) e 1
/ cos(x?)dx = / sin(z?)dr = = ™
0 0 2V 2

(a) By integrating the function exp(iz?) around the positively oriented
boundary of the sector 0 <r < R, 0<6 < I (Fig. 99) and appealing
to the Cauchy-Goursat theorem, show that
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where Cp is the arc 2 = Re?(0 < 0 < ).
(b) Show that the value of the integral along the arc C in part (a) tends
to zero as R tends to infinity by obtaining the inequality
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and then referring to the form (2), Sec. 81, of Jordan’s inequality.

(c) Use the results in part (a) and (b), together with the knowing formula
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to complete the exercise.

8. Use the function f(z) = (e — €®¥)/2? and the indented contour in
Fig.108(Sec.89) to derive the integration formula
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Then with the aid of the trigonometric identity 1 — cos(2z) = 2sin’z,
point out how it follows that

Derive the integration formula
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over the indented contour appearing in Fig. 109 (Sec. 90).

The beta function is this function of two real variables:
1
B(p,q) = / (1 —t)"ldt (p>0,q>0)
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Make the substitution ¢ = 1/(x + 1) and use the result obtained in the
example in Sec. 91 to show that

B(p,1—p) = Sin?—pﬂ') (0<p<1).



