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4.3 The Method of Undetermined Coefficients 239

The method of undetermined coefficients can be used whenever it is possible to
guess the correct form for Y(t). However, this is usually impossible for differential
equations not having constant coefficients, or for nonhomogeneous terms other than
the typedescribedpreviously. Formore complicatedproblemswe canuse themethod
of variation of parameters, which is discussed in the next section.

PROBLEMS In each of Problems 1 through 8, determine the general solution of the given differential
equation.
1. y′′′ − y′′ − y′ + y = 2e−t + 3 2. y(4) − y = 3t + cos t

3. y′′′ + y′′ + y′ + y = e−t + 4t 4. y′′′ − y′ = 2 sin t

5. y(4) − 4y′′ = t2 + et 6. y(4) + 2y′′ + y = 3+ cos 2t
7. y(6) + y′′′ = t 8. y(4) + y′′′ = sin 2t
In each of Problems 9 through 12, find the solution of the given initial value problem. Then
plot a graph of the solution.
9. y′′′ + 4y′ = t; y(0) = y′(0) = 0, y′′(0) = 1
10. y(4) + 2y′′ + y = 3t + 4; y(0) = y′(0) = 0, y′′(0) = y′′′(0) = 1
11. y′′′ − 3y′′ + 2y′ = t + et ; y(0) = 1, y′(0) = − 1

4 , y′′(0) = − 3
2

12. y(4) + 2y′′′ + y′′ + 8y′ − 12y = 12 sin t − e−t ; y(0) = 3, y′(0) = 0,
y′′(0) = −1, y′′′(0) = 2

In each of Problems 13 through 18, determine a suitable form for Y(t) if the method of
undetermined coefficients is to be used. Do not evaluate the constants.
13. y′′′ − 2y′′ + y′ = t3 + 2et 14. y′′′ − y′ = te−t + 2 cos t

15. y(4) − 2y′′ + y = et + sin t 16. y(4) + 4y′′ = sin 2t + tet + 4
17. y(4) − y′′′ − y′′ + y′ = t2 + 4+ t sin t 18. y(4) + 2y′′′ + 2y′′ = 3et + 2te−t + e−t sin t

19. Consider the nonhomogeneous nth order linear differential equation

a0y(n) + a1y(n−1) + · · · + any = g(t), (i)

where a0, . . . , an are constants. Verify that if g(t) is of the form

eαt(b0tm + · · · + bm),

then the substitution y = eαtu(t) reduces Eq. (i) to the form

k0u(n) + k1u(n−1) + · · · + knu = b0tm + · · · + bm, (ii)

where k0, . . . , kn are constants. Determine k0 and kn in terms of the a’s and α. Thus the
problemof determining a particular solution of the original equation is reduced to the sim-
pler problem of determining a particular solution of an equationwith constant coefficients
and a polynomial for the nonhomogeneous term.

Method of Annihilators. In Problems 20 through 22, we consider another way of arriving at
the proper form of Y(t) for use in the method of undetermined coefficients. The procedure
is based on the observation that exponential, polynomial, or sinusoidal terms (or sums and
products of such terms) can be viewed as solutions of certain linear homogeneous differential
equations with constant coefficients. It is convenient to use the symbol D for d/dt. Then, for
example, e−t is a solution of (D + 1)y = 0; the differential operatorD + 1 is said to annihilate,
or to be an annihilator of, e−t . In the same way, D2 + 4 is an annihilator of sin 2t or cos 2t,
(D − 3)2 = D2 − 6D + 9 is an annihilator of e3t or te3t , and so forth.
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20. Show that linear differential operators with constant coefficients obey the commutative
law. That is, show that

(D − a)(D − b)f = (D − b)(D − a)f

for any twice-differentiable function f and any constants a and b. The result extends at
once to any finite number of factors.

21. Consider the problem of finding the form of a particular solution Y(t) of

(D − 2)3(D + 1)Y = 3e2t − te−t , (i)

where the left side of the equation is written in a form corresponding to the factorization
of the characteristic polynomial.
(a) Show thatD − 2 and (D + 1)2, respectively, are annihilators of the terms on the right
side of Eq. (i), and that the combined operator (D − 2)(D + 1)2 annihilates both terms on
the right side of Eq. (i) simultaneously.
(b) Apply the operator (D − 2)(D + 1)2 to Eq. (i) and use the result of Problem 20 to
obtain

(D − 2)4(D + 1)3Y = 0. (ii)

Thus Y is a solution of the homogeneous equation (ii). By solving Eq. (ii), show that

Y(t) = c1e2t + c2te2t + c3t2e2t + c4t3e2t + c5e−t + c6te−t + c7t2e−t , (iii)

where c1, . . . , c7 are constants, as yet undetermined.
(c) Observe that e2t , te2t , t2e2t , and e−t are solutions of the homogeneous equation cor-
responding to Eq. (i); hence these terms are not useful in solving the nonhomogeneous
equation. Therefore, choose c1, c2, c3, and c5 to be zero in Eq. (iii), so that

Y(t) = c4t3e2t + c6te−t + c7t2e−t . (iv)

This is the form of the particular solution Y of Eq. (i). The values of the coefficients c4, c6,
and c7 can be found by substituting from Eq. (iv) in the differential equation (i).

Summary. Suppose that

L(D)y = g(t), (v)

where L(D) is a linear differential operator with constant coefficients, and g(t) is a sum or
product of exponential, polynomial, or sinusoidal terms. To find the form of a particular
solution of Eq. (v), you can proceed as follows:

(a) Find a differential operator H(D) with constant coefficients that annihilates g(t)—that is,
an operator such that H(D)g(t) = 0.
(b) Apply H(D) to Eq. (v), obtaining

H(D)L(D)y = 0, (vi)

which is a homogeneous equation of higher order.

(c) Solve Eq. (vi).

(d) Eliminate from the solution found in step (c) the terms that also appear in the solution
of L(D)y = 0. The remaining terms constitute the correct form of a particular solution of
Eq. (v).

22. Use the method of annihilators to find the form of a particular solution Y(t) for each of
the equations in Problems 13 through 18. Do not evaluate the coefficients.
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shall see in Section 5.3 that even without knowing the formula for an, it is possible to establish
that the two series in Eq. (23) converge for all x. Further, they define functions y3 and y4 that
are a fundamental set of solutions of theAiry equation (15). Thus

y = a0y3(x) + a1y4(x)

is the general solution of Airy’s equation for −∞ < x < ∞.

It is worth emphasizing, as we saw in Example 3, that if we look for a solution

of Eq. (1) of the form y =
∞∑

n=0
an(x − x0)n, then the coefficients P(x), Q(x), and R(x)

in Eq. (1) must also be expressed in powers of x − x0. Alternatively, we can make
the change of variable x − x0 = t, obtaining a new differential equation for y as a

function of t, and then look for solutions of this new equation of the form
∞∑

n=0
antn.

When we have finished the calculations, we replace t by x − x0 (see Problem 19).
In Examples 2 and 3 we have found two sets of solutions of Airy’s equation. The

functions y1 and y2 defined by the series in Eq. (20) are a fundamental set of solutions
ofEq. (15) for all x,and this is also true for the functions y3 and y4 definedby the series
in Eq. (23). According to the general theory of second order linear equations, each
of the first two functions can be expressed as a linear combination of the latter two
functions, and vice versa—a result that is certainly not obvious from an examination
of the series alone.
Finally,we emphasize that it is not particularly important if, as in Example 3,we are

unable to determine the general coefficient an in terms of a0 and a1.What is essential
is that we can determine as many coefficients as we want. Thus we can find as many
terms in the two series solutions as we want, even if we cannot determine the general
term. While the task of calculating several coefficients in a power series solution is
not difficult, it can be tedious. A symbolic manipulation package can be very helpful
here; some are able to find a specified number of terms in a power series solution in
response to a single command.With a suitable graphics package we can also produce
plots such as those shown in the figures in this section.

PROBLEMS In each of Problems 1 through 14:
(a) Seek power series solutions of the given differential equation about the given point x0;
find the recurrence relation.
(b) Find the first four terms in each of two solutions y1 and y2 (unless the series terminates
sooner).
(c) By evaluating the Wronskian W(y1, y2)(x0), show that y1 and y2 form a fundamental set
of solutions.
(d) If possible, find the general term in each solution.

1. y′′ − y = 0, x0 = 0 2. y′′ − xy′ − y = 0, x0 = 0
3. y′′ − xy′ − y = 0, x0 = 1 4. y′′ + k2x2y = 0, x0 = 0, k a constant

5. (1− x)y′′ + y = 0, x0 = 0 6. (2+ x2)y′′ − xy′ + 4y = 0, x0 = 0
7. y′′ + xy′ + 2y = 0, x0 = 0 8. xy′′ + y′ + xy = 0, x0 = 1
9. (1+ x2)y′′ − 4xy′ + 6y = 0, x0 = 0 10. (4− x2)y′′ + 2y = 0, x0 = 0



August 7, 2012 21:04 c05 Sheet number 35 Page number 281 cyan black

5.4 Euler Equations; Regular Singular Points 281

37. Find γ so that the solution of the initial value problem x2y′′ − 2y = 0, y(1) = 1, y′(1) = γ

is bounded as x → 0.

38. Find all values of α for which all solutions of x2y′′ + αxy′ + (5/2)y = 0 approach zero as
x → ∞.

39. Consider the Euler equation x2y′′ + αxy′ + βy = 0. Find conditions on α and β so that:
(a) All solutions approach zero as x → 0.
(b) All solutions are bounded as x → 0.
(c) All solutions approach zero as x → ∞.
(d) All solutions are bounded as x → ∞.
(e) All solutions are bounded both as x → 0 and as x → ∞.

40. Using the method of reduction of order, show that if r1 is a repeated root of

r(r − 1) + αr + β = 0,
then xr1 and xr1 ln x are solutions of x2y′′ + αxy′ + βy = 0 for x > 0.

In each of Problems 41 and 42, show that the point x = 0 is a regular singular point. In each
problem try to find solutions of the form

∞∑
n=0

anxn. Show that (except for constant multiples)

there is only one nonzero solution of this form in Problem 41 and that there are no nonzero
solutions of this form in Problem 42. Thus in neither case can the general solution be found in
this manner. This is typical of equations with singular points.

41. 2xy′′ + 3y′ + xy = 0
42. 2x2y′′ + 3xy′ − (1+ x)y = 0
43. Singularities at Infinity. The definitions of an ordinary point and a regular singular point

given in the preceding sections apply only if the point x0 is finite. In more advanced work
in differential equations, it is often necessary to consider the point at infinity. This is done
by making the change of variable ξ = 1/x and studying the resulting equation at ξ = 0.
Show that, for the differential equation

P(x)y′′ + Q(x)y′ + R(x)y = 0,
the point at infinity is an ordinary point if

1
P(1/ξ)

[
2P(1/ξ)

ξ
− Q(1/ξ)

ξ2

]
and

R(1/ξ)
ξ4P(1/ξ)

haveTaylor series expansions about ξ = 0. Show also that the point at infinity is a regular
singular point if at least one of the above functions does not have aTaylor series expansion,
but both

ξ

P(1/ξ)

[
2P(1/ξ)

ξ
− Q(1/ξ)

ξ2

]
and

R(1/ξ)
ξ2P(1/ξ)

do have such expansions.

In each of Problems 44 through 49, use the results of Problem 43 to determine whether the
point at infinity is an ordinary point, a regular singular point, or an irregular singular point of
the given differential equation.

44. y′′ + y = 0
45. x2y′′ + xy′ − 4y = 0
46. (1− x2)y′′ − 2xy′ + α(α + 1)y = 0, Legendre equation




