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144 Chapter 3. Second Order Linear Equations
PROBLEMS In each of Problems 1 through 8, find the general solution of the given differential equation.
= 1.y'+2y-3y=0 2.y +3y'+2y=0
3.6y) =y —y=0 4. 2y" =3y +y=0
5.y"4+5y =0 6. 4" -9 =0
7.9"=9"+9y =0 8. y'—=2y—=2y=0

In each of Problems 9 through 16, find the solution of the given initial value problem. Sketch
the graph of the solution and describe its behavior as ¢ increases.

9. V' +y =2y=0,  yO =1 y(@O) =1
10. y"+4y' +3y =0, y0) =2, y(0)=-1
11. 6y" =5y +y =0, yO) =4, y©0) =0
12. y" +3y' =0, yO0)=-2, y0)=3
13. y" +5y' +3y =0, y0)=1, y(©0) =0
14. 2y" +y —4y =0, y0)=0, y@©0) =1
15. y" +8y' =9y =0, yh=1, y@d)=0
16. 4y" —y =0, y=2)=1, y2)=-1
17. Find a differential equation whose general solution is y = ¢je + ce™.
18. Find a differential equation whose general solution is y = c¢je™"/% + c,e™%.
19. Find the solution of the initial value problem

y'—y=0, yO0)=3 yO0=-3.

Plot the solution for 0 < ¢t < 2 and determine its minimum value.
20. Find the solution of the initial value problem

2y =3y +y=0, y0)=2, y©0 =3.

Then determine the maximum value of the solution and also find the point where the
solution is zero.

21. Solve the initial value problem y” —y" — 2y =0, y(0) = «, y'(0) = 2. Then find « so that
the solution approaches zero as t — oo.

22. Solve the initial value problem 4y” —y = 0, y(0) = 2, y’(0) = B. Then find B so that the
solution approaches zero as t — oo.

In each of Problems 23 and 24, determine the values of «, if any, for which all solutions tend to
zero ast — oo; also determine the values of «, if any, for which all (nonzero) solutions become
unbounded as t — oo.

23,y —QRa—1y +a@—1y=0
24y + B —-a)y —2(a—-1)y=0
25. Consider the initial value problem

2y"+3y' =2y =0, yO) =1, y(©0) =-5,

where 8 > 0.
(a) Solve the initial value problem.

(b) Plot the solution when 8 = 1. Find the coordinates (f, ) of the minimum point of
the solution in this case.

(c) Find the smallest value of 8 for which the solution has no minimum point.
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EXAMPLE

7

without solving the differential equation. Further, since under the conditions of The-
orem 3.2.7 the Wronskian W is either always zero or never zero, you can determine
which case actually occurs by evaluating W at any single convenient value of .

In Example 5 we verified that y,(f) = t'/? and y,(¢) = ¢~! are solutions of the equation
262y + 3ty —y =0, t>0. (29)

Verify that the Wronskian of y; and y, is given by Eq. (23).

From the example just cited we know that W (yy, y»)(t) = —(3/2)t~3/2. To use Eq. (23), we
must write the differential equation (29) in the standard form with the coefficient of y” equal
to 1. Thus we obtain

//+3/ 1 =0
y y thy—,

2t
so p(t) = 3/2t. Hence

3 3
Wy, y2)(t) = c exp [—/ 5 dt] =cexp (—E In t)
=ct2, (30)

Equation (30) gives the Wronskian of any pair of solutions of Eq. (29). For the particular
solutions given in this example, we must choose ¢ = —3/2.

Summary. We can summarize the discussion in this section as follows: to find the
general solution of the differential equation

V' +p@)y +qt)y=0, a<t<§p,

we must first find two functions y; and y, that satisfy the differential equation in
a <t < f. Then we must make sure that there is a point in the interval where the
Wronskian W of y; and y, is nonzero. Under these circumstances y; and y, form a
fundamental set of solutions, and the general solution is

y = c1y1(t) + cay2(0),

where ¢ and ¢, are arbitrary constants. If initial conditions are prescribed at a point
ina <t < B,then ¢; and ¢, can be chosen so as to satisfy these conditions.

PROBLEMS

In each of Problems 1 through 6, find the Wronskian of the given pair of functions.

1. &%, e 3/? 2. cost, sint
3. 7% e 4. x, xe*
5. e'sint, e'cost 6. cos?0, 14 cos26

In each of Problems 7 through 12, determine the longest interval in which the given initial
value problem is certain to have a unique twice-differentiable solution. Do not attempt to find
the solution.

7.ty +3y=t, ylh)=1, yay=2
8. (t—1)y =31y +4y =sint, y(-2)=2, y(-2) =1
9.1t —4y"+3ty' +4y =2, y3) =0, y3) =-1

10. y" 4 (cost)y’ +3(n|t])y =0, y2)=3, y2 =1
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11. (x =3)y" +xy' + (In|x))y = 0, y) =0, y@d=1
12 (x=2)y" +y + (x=2)(tanx)y =0, y3) =1, y(3) =2

13. Verify that y;(1) = > and y,(f) =¢~' are two solutions of the differential equation
t?y" — 2y = 0 for ¢t > 0. Then show that y = ¢, + ¢,¢~! is also a solution of this equation
for any ¢; and c;.

14. Verify that y; () = 1 and y,(¢) = t'/? are solutions of the differential equation
yy" + (¢)* = 0fort > 0.Then show that y = ¢; + ¢,t'/ is not, in general, a solution of this
equation. Explain why this result does not contradict Theorem 3.2.2.

15. Show that if y = ¢(¢) is a solution of the differential equation y” + p(¢)y’ + q(t)y = g(1),
where g(¢) is not always zero, then y = c¢(¢), where c is any constant other than 1,is not a
solution. Explain why this result does not contradict the remark following Theorem 3.2.2.

16. Can y = sin(s?) be a solution on an interval containing ¢ = 0 of an equation
V' +p@)y" + q(t)y = 0 with continuous coefficients? Explain your answer.

17. If the Wronskian W of f and g is 3¢*, and if f(t) = €%, find g(¢).

18. If the Wronskian W of f and g is %¢', and if f(t) = ¢, find g(¢).

19. If W(f,g) is the Wronskian of f and g, and if u = 2f — g, v = f + 2g, find the Wronskian
W (u,v) of u and v in terms of W(f, g).

20. If the Wronskian of f and g is tcost —sint, and if u=f+3g,v=f—g, find the
Wronskian of u and v.

21. Assume that y; and y, are a fundamental set of solutions of y” + p(¢)y’ 4+ q(t)y = 0 and let
V3 = a1y + axy, and y, = byy; + byy,,where ay,a,,b1,and b, are any constants. Show that

W (y3,y4) = (a1D2 — a2b) W (y1, y2).
Are y; and y, also a fundamental set of solutions? Why or why not?

In each of Problems 22 and 23, find the fundamental set of solutions specified by Theorem
3.2.5 for the given differential equation and initial point.

22, y"4+y =2y =0, th=0

23. y"+4y' +3y =0, fh=1

In each of Problems 24 through 27, verify that the functions y, and y, are solutions of the given
differential equation. Do they constitute a fundamental set of solutions?

24. y" +4y =0; y1(t) = cos2t, y,(t) =sin2t

25. 9" =2y +y=0;  yi()=¢, yt) =te

26. X°y" —x(x+2)y + (x+2)y=0, x>0; yix) =x, y2(x) =xe*

27. 1 —xcotx)y” —xy'+y=0, O0<x<m; yi(x) =x, y(x) =sinx

28. Consider the equation y” —y" —2y = 0.
(a) Show that y;(r) = e~* and y,(¢) = ¢* form a fundamental set of solutions.
(b) Let y3(t) = =2¢%, y4(t) = y1(t) + 2y2(1), and ys() = 2y1(r) — 2y3(1). Are y3(1), y4(0),
and ys(¢) also solutions of the given differential equation?
(c) Determine whether each of the following pairs forms a fundamental set of solutions:

1@, y: (O] 20, y3(D]; [y1(D),ya@];  [ya(®),ys®O].

In each of Problems 29 through 32, find the Wronskian of two solutions of the given differential
equation without solving the equation.

29. 2y —t(t+2)y + (¢ +2)y=0 30. (cost)y” + (sint)y —ty =0
31 X%y 4 xy' 4+ (¥ =)y =0, Bessel’s equation
32. (1 =x*)y" —2xy +a(@+1)y =0, Legendre’s equation
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33. Show that if p is differentiable and p(¢) > 0, then the Wronskian W (¢) of two solutions of
[pYT + q®)y =0is W(t) = ¢/p(t), where c is a constant.

34. If the differential equation zy” 4+ 2y’ 4 te'y = 0 has y; and y, as a fundamental set of
solutions and if W (y,y,)(1) = 2, find the value of W (y1,y,)(5).

35. If the differential equation r2y” — 2y’ + (3 + )y = 0 has y; and y, as a fundamental set of
solutions and if W (yy,y,)(2) = 3, find the value of W (y1,y,)(4).

36. If the Wronskian of any two solutions of y” + p(t)y" 4+ g(¢)y = 01is constant, what does this
imply about the coefficients p and g?

37. If f, g, and h are differentiable functions, show that W (fg, fh) = f>W (g, h).

In Problems 38 through 40, assume that p and g are continuous and that the functions y; and
v, are solutions of the differential equation y” + p(¢)y’ 4+ ¢(¢)y = 0 on an open interval /.

38. Prove that if y; and y, are zero at the same point in /, then they cannot be a fundamental
set of solutions on that interval.

39. Prove that if y; and y, have maxima or minima at the same point in /, then they cannot
be a fundamental set of solutions on that interval.

40. Prove that if y; and y, have a common point of inflection ¢ in 7, then they cannot be a
fundamental set of solutions on 7 unless both p and g are zero at ;.

41. Exact Equations. The equation
Py +Q)y + Rx)y =0
is said to be exact if it can be written in the form
[P()YT +[f(x)yl =0,

where f(x) is to be determined in terms of P(x), Q(x), and R(x). The latter equation can
be integrated once immediately, resulting in a first order linear equation for y that can be
solved as in Section 2.1. By equating the coefficients of the preceding equations and then
eliminating f(x), show that a necessary condition for exactness is

P'(x) = Q'(x) + R(x) = 0.
It can be shown that this is also a sufficient condition.

In each of Problems 42 through 45, use the result of Problem 41 to determine whether the
given equation is exact. If it is, then solve the equation.

42. y"+xy'+y=0 43. y" +3x%y' +xy =0
44. xy" — (cosx)y' + (sinx)y =0, x>0 45. X*y" +xy' —y=0, x>0

46. The Adjoint Equation. Ifasecond order linear homogeneous equation is not exact, it can
be made exact by multiplying by an appropriate integrating factor 1 (x). Thus we require
that i (x) be such that

p@P@X)Y" + p)Q)y + pnx)Rx)y =0
can be written in the form
L@ P@)yT + [f(x)y] =0.

By equating coefficients in these two equations and eliminating f(x), show that the
function . must satisfy

Pu"+ QP - Q'+ (P" = Q' + Ry =0.
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note that if the real part of the roots is zero, as in this example, then there is no exponential
factor in the solution. Figure 3.3.3 shows the graph of two typical solutions of Eq. (28). In each
case the solution is a pure oscillation whose amplitude is determined by the initial conditions.
Since there is no exponential factor in the solution (29), the amplitude of each oscillation
remains constant in time.

PROBLEMS

In each of Problems 1 through 6, use Euler’s formula to write the given expression in the form
a+ib.

1. exp(1 + 2i) 2. exp(2 — 3i)
3. e 4, /i
5. 2t 6. g 1+2
In each of Problems 7 through 16, find the general solution of the given differential equation.
7.y =2y +2y=0 8. y'=2y+6y=0
9.y +2y —8 =0 10. y"+2y'+2y =0
11. y"+ 6y + 13y =0 12. 4y" +9y =0
13. y"+2y' +125y =0 14. 9"+ 9y —4y =0
15. y"+y +125y =0 16. y" +4y + 625y =0

In each of Problems 17 through 22, find the solution of the given initial value problem. Sketch
the graph of the solution and describe its behavior for increasing ¢.

17. y" +4y =0, y@0)=0, Y0 =1

18. y"+4y'+5y=0, yO) =1, y(©0)=0
19.y"=2y'+5y =0,  y@/2)=0, y(@/2)=2
20. y" +y =0, y(/3) =2, y(x/3)=-4

21. y"+y' + 125y =0, y0)=3, Y0 =1

22. y" +2y' +2y =0, y(r/4) =2, y(x/4) =-2

."Z 23. Consider the initial value problem

3u" —u' +2u =0, u0) =2, u'0) =0.

(a) Find the solution u(z) of this problem.
(b) Fort > 0, find the first time at which |u(r)| = 10.

."Z 24. Consider the initial value problem

Su’ +2u +Tu=0, u =2, u'0)=1.

(a) Find the solution u(z) of this problem.
(b) Find the smallest T such that |u(f)| < 0.1 forallz > T.

“Z 25. Consider the initial value problem

Y +2y+6y=0, y0)=2, yO0)=a=0.
(a) Find the solution y(¢) of this problem.
(b) Find « such that y =0 whent = 1.

(c) Find, as a function of «, the smallest positive value of 7 for which y = 0.
(d) Determine the limit of the expression found in part (c) as « — oo.
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& 26.

27.
28.

29.

30.
31.

32.

33.

Consider the initial value problem
y' +2ay + (@ + 1)y =0, y0) =1, y'(0)=0.

(a) Find the solution y(¢) of this problem.

(b) For a =1 find the smallest T such that |y(t)| < 0.1 fort > T.

(c) Repeat part (b) fora = 1/4,1/2,and 2.

(d) Using the results of parts (b) and (c), plot 7 versus a and describe the relation between
T and a.

Show that W (e* cos jut, e sin ut) = pe?.

In this problem we outline a different derivation of Euler’s formula.

(a) Show that y;(t) = cost and y,(¢f) =sin¢ are a fundamental set of solutions of
y" 4+ y = 0; that is, show that they are solutions and that their Wronskian is not zero.

(b) Show (formally) that y = ¢ is also a solution of y” + y = 0. Therefore,
e =cjcost+cysint (i)

for some constants ¢; and ¢,. Why is this so?

(c) Sett=0in Eq. (i) to show that ¢; = 1.

(d) Assuming that Eq. (14) is true, differentiate Eq. (i) and then set # = 0 to conclude that
¢; = i. Use the values of ¢; and ¢; in Eq. (i) to arrive at Euler’s formula.

Using Euler’s formula, show that
cost = (e +e7)/2, sint = (e — e /2i.

If ¢ is given by Eq. (13), show that e"1#72) = ¢"’e™! for any complex numbers r; and r;.
If ¢” is given by Eq. (13), show that

for any complex number r.
Consider the differential equation

ay" +by +cy =0,

where b? — 4ac < 0 and the characteristic equation has complex roots A & ixt. Substitute
the functions
u(t) =ecosput and () = e sin ut

for y in the differential equation and thereby confirm that they are solutions.

If the functions y; and y, are a fundamental set of solutions of y” + p(t)y' + q(t)y =0,
show that between consecutive zeros of y; there is one and only one zero of y,. Note
that this result is illustrated by the solutions y; (f) = cos¢ and y,(¢) = sin ¢ of the equation
y'+y=0.

Hint: Suppose that #; and ¢, are two zeros of y; between which there are no zeros of y,.
Apply Rolle’s theorem to y;/y; to reach a contradiction.

Change of Variables. Sometimes a differential equation with variable coefficients,

Y +p@®)y +q@®y =0, (1)

can be putin a more suitable form for finding a solution by making a change of the independent
variable. We explore these ideas in Problems 34 through 46. In particular, in Problem 34 we
show that a class of equations known as Euler equations can be transformed into equations
with constant coefficients by a simple change of the independent variable. Problems 35 through
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42 are examples of this type of equation. Problem 43 determines conditions under which the
more general Eq. (i) can be transformed into a differential equation with constant coefficients.
Problems 44 through 46 give specific applications of this procedure.

34. Euler Equations. An equation of the form

,d%y dy ..
tﬁ—i—at——l—ﬂy 0, t>0, (i1)

where « and g are real constants, is called an Euler equation.
(a) Letx = Int and calculate dy/dt and dy/dt* in terms of dy/dx and d’y/dx>.
(b) Use the results of part (a) to transform Eq. (ii) into

d’y

dz-l—(a—l)——l—ﬁy 0. (iif)

Observe that Eq. (iii) has constant coefficients. If y; (x) and y,(x) form a fundamental set
of solutions of Eq. (iii), then y;(In¢) and y,(In¢) form a fundamental set of solutions of

Eq. (ii).

In each of Problems 35 through 42, use the method of Problem 34 to solve the given equation
fort > 0.

35. 2%y +1y +y=0 36. 2y +41y' +2y =0
37. 2y 43ty +125y =0 38. 2" — 4ty — 6y =0
39. 2y — 4ty +6y =0 40. 2y’ —1ty' +5y =0
41. 2" +3ty =3y =0 2. 2y +7ty +10y =0

43. In this problem we determine conditions on p and ¢ that enable Eq. (i) to be transformed
into an equation with constant coefficients by a change of the independent variable. Let
x = u(t) be the new independent variable, with the relation between x and ¢ to be specified
later.
(a) Show that
dy dx dy d’y dx\* d?y  dx dy
dr ~ dr dx’ WZ(E)E d? dx’

(b) Show that the differential equation (i) becomes

dx\' d’y  (d’x d ,
(;f) proi (ﬁ +p )—) d—i +qy =0. (iv)

(c) In order for Eq. (iv) to have constant coefficients, the coefficients of d’y/dx* and of
y must be proportional. If g(t) > 0, then we can choose the constant of proportionality to
be 1;hence

x=u() = /[q(z‘)]l/2 dt. v)

(d) With x chosen as in part (c), show that the coefficient of dy/dx in Eq. (iv) is also a
constant, provided that the expression

q'() +2p0)q ()
2[g(nP>
is a constant. Thus Eq. (i) can be transformed into an equation with constant coefficients

by a change of the independent variable, provided that the function (¢’ + 2pq)/q¢>? is a
constant. How must this result be modified if g(¢) < 0?

(vi)





