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Solving Eq. (31) for vy, we find the initial velocity required to lift the body to the altitude &,

namely,
§
= |2gR . 2
OV Ry 2

The escape velocity v, is then found by letting £ — oco. Consequently,

ve = v/2gR. (33)

The numerical value of v, is approximately 6.9 mi/s, or 11.1 km/s.

The preceding calculation of the escape velocity neglects the effect of air resistance, so the
actual escape velocity (including the effect of air resistance) is somewhat higher. On the other
hand, the effective escape velocity can be significantly reduced if the body is transported a
considerable distance above sea level before being launched. Both gravitational and frictional
forces are thereby reduced; air resistance, in particular, diminishes quite rapidly with increasing
altitude. You should keep in mind also that it may well be impractical to impart too large an
initial velocity instantaneously; space vehicles, for instance, receive their initial acceleration
during a period of a few minutes.

PROBLEMS

1. Consider a tank used in certain hydrodynamic experiments. After one experiment the
tank contains 200 L of a dye solution with a concentration of 1 g/L. To prepare for
the next experiment, the tank is to be rinsed with fresh water flowing in at a rate of
2 L/min, the well-stirred solution flowing out at the same rate. Find the time that will
elapse before the concentration of dye in the tank reaches 1% of its original value.

2. A tank initially contains 120 L of pure water. A mixture containing a concentration of
y g/L of salt enters the tank at a rate of 2 L/min, and the well-stirred mixture leaves the
tank at the same rate. Find an expression in terms of y for the amount of salt in the tank
at any time ¢. Also find the limiting amount of salt in the tank as ¢ — oco.

3. A tank originally contains 100 gal of fresh water. Then water containing 1 Ib of salt per
gallon is poured into the tank at a rate of 2 gal/min, and the mixture is allowed to leave at
the same rate. After 10 min the process is stopped, and fresh water is poured into the tank
at a rate of 2 gal/min, with the mixture again leaving at the same rate. Find the amount of
salt in the tank at the end of an additional 10 min.

4. A tank with a capacity of 500 gal originally contains 200 gal of water with 100 Ib of salt
in solution. Water containing 1 1b of salt per gallon is entering at a rate of 3 gal/min, and
the mixture is allowed to flow out of the tank at a rate of 2 gal/min. Find the amount
of salt in the tank at any time prior to the instant when the solution begins to overflow.
Find the concentration (in pounds per gallon) of salt in the tank when it is on the point
of overflowing. Compare this concentration with the theoretical limiting concentration if
the tank had infinite capacity.

."Z 5. A tank contains 100 gal of water and 50 oz of salt. Water containing a salt concentration of

%(1 + % sint) oz/gal flows into the tank at a rate of 2 gal/min, and the mixture in the tank
flows out at the same rate.

(a) Find the amount of salt in the tank at any time.

(b) Plot the solution for a time period long enough so that you see the ultimate behavior
of the graph.

(c) The long-time behavior of the solution is an oscillation about a certain constant level.
What is this level? What is the amplitude of the oscillation?
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(b) Use the result of part (a) to calculate the limit of v(¢) as k — O—that is, as the resis-
tance approaches zero. Does this result agree with the velocity of a mass m projected
upward with an initial velocity v, in a vacuum?

(c) Use the result of part (a) to calculate the limit of v(¢) as m — 0—that is, as the mass
approaches zero.

27. A body falling in a relatively dense fluid, oil for example, is acted on by three forces
(see Figure 2.3.5): a resistive force R, a buoyant force B, and its weight w due to gravity.
The buoyant force is equal to the weight of the fluid displaced by the object. For a slowly
moving spherical body of radius a, the resistive force is given by Stokes’s law, R = 6w palv|,
where v is the velocity of the body, and w is the coefficient of viscosity of the surrounding
fluid.”

(a) Find the limiting velocity of a solid sphere of radius a and density p falling freely in a
medium of density p’ and coefficient of viscosity .

(b) In 1910 R. A. Millikan® studied the motion of tiny droplets of oil falling in an electric
field. A field of strength E exerts a force Ee on a droplet with charge e. Assume that E
has been adjusted so the droplet is held stationary (v = 0) and that w and B are as given
above. Find an expression for e. Millikan repeated this experiment many times, and from
the data that he gathered he was able to deduce the charge on an electron.

R4} 4B

e

.

FIGURE 2.3.5 A body falling in a dense fluid.

."?, 28. A mass of 0.25 kg is dropped from rest in a medium offering a resistance of 0.2|v|, where
v is measured in m/s.

(a) If the mass is dropped from a height of 30 m, find its velocity when it hits the ground.

(b) If the mass is to attain a velocity of no more than 10 m/s, find the maximum height
from which it can be dropped.

7Sir George Gabriel Stokes (1819-1903) was born in Ireland but for most of his life was at Cambridge
University, first as a student and later as a professor. Stokes was one of the foremost applied mathemati-
cians of the nineteenth century, best known for his work in fluid dynamics and the wave theory of light.
The basic equations of fluid mechanics (the Navier—Stokes equations) are named partly in his honor, and
one of the fundamental theorems of vector calculus bears his name. He was also one of the pioneers in
the use of divergent (asymptotic) series.

8Robert A. Millikan (1868-1953) was educated at Oberlin College and Columbia University. Later he
was a professor at the University of Chicago and California Institute of Technology. His determination of
the charge on an electron was published in 1910. For this work, and for other studies of the photoelectric
effect, he was awarded the Nobel Prize for Physics in 1923.
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\ ¢3(t) =K
/

(a) ()
FIGURE 2.5.8 Logistic growth with a threshold: dy/dt = —r(1 —y/T)(1 — y/K)y.
(a) The phase line. (b) Plots of y versus ¢.

A model of this general sort apparently describes the population of the passen-
ger pigeon,'® which was present in the United States in vast numbers until late in the
nineteenth century. It was heavily hunted for food and for sport, and consequently its
numbers were drastically reduced by the 1880s. Unfortunately, the passenger pigeon
could apparently breed successfully only when present in a large concentration, cor-
responding to a relatively high threshold 7. Although a reasonably large number of
individual birds remained alive in the late 1880s, there were not enough in any one
place to permit successful breeding, and the population rapidly declined to extinc-
tion. The last survivor died in 1914. The precipitous decline in the passenger pigeon
population from huge numbers to extinction in a few decades was one of the early
factors contributing to a concern for conservation in this country.

PROBLEMS

Problems 1 through 6 involve equations of the form dy/dt = f(y). In each problem sketch the
graph of f(y) versus y, determine the critical (equilibrium) points, and classify each one as
asymptotically stable or unstable. Draw the phase line, and sketch several graphs of solutions
in the ty-plane.

1. dy/dt = ay + by?, a>0, b>0, y;>0

2. dy/dt = ay + by?, a>0, b>0, —o00o<yy<o0
3.dy/dt=y(y -1y —2), y =0

4. dy/dt =¢ — 1, —00 < Yy < 00

5. dyj/dt =e —1, —00 < yp < 00

6. dy/dt = —2(arctany)/(1 + y?), —00 < yp < 00

7

. Semistable Equilibrium Solutions. Sometimes a constant equilibrium solution has the
property that solutions lying on one side of the equilibrium solution tend to approach it,

13See, for example, Oliver L. Austin, Jr., Birds of the World (New York: Golden Press, 1983), pp. 143-145.
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whereas solutions lying on the other side depart from it (see Figure 2.5.9). In this case the
equilibrium solution is said to be semistable.

(a) Consider the equation

dy/dt = k(1 —y)?, ®

where k is a positive constant. Show that y =1 is the only critical point, with the
corresponding equilibrium solution ¢(¢) = 1.

(b) Sketch f(y) versus y. Show that y is increasing as a function of ¢ for y < 1 and also
for y > 1. The phase line has upward-pointing arrows both below and above y = 1. Thus
solutions below the equilibrium solution approach it,and those above it grow farther away.
Therefore, ¢(¢) = 1 is semistable.

(¢) Solve Eq. (i) subject to the initial condition y(0) = y, and confirm the conclusions
reached in part (b).

(@) t ) t

FIGURE 2.5.9 In both cases the equilibrium solution ¢(¢) = k is semistable.
(a) dy/dt < 0;(b) dy/dt > 0.

Problems 8 through 13 involve equations of the form dy/dt = f(y). In each problem sketch
the graph of f(y) versus y, determine the critical (equilibrium) points, and classify each one
asymptotically stable, unstable, or semistable (see Problem 7). Draw the phase line, and sketch
several graphs of solutions in the ty-plane.

8.

9.
10.
11.
12.
13.
14.

15.

dy/dt = —k(y — 1), k>0, —00<yy<o00

dy/dt = y*(y> — 1), —00 < yp < 00

dy/dt =y(1—y?),  —00<yy<o0

dy/dt =ay —b./y, a>0, b>0, yy>0

dy/dt = y*(4 — y?), —00 < Yy < 00

dy/dt = y*(1—y)*,  —oo<y)<o0

Consider the equation dy/dt = f(y) and suppose that y; is a critical point—that is,

f(y1) = 0. Show that the constant equilibrium solution ¢(¢) = y; is asymptotically stable
if f'(y1) < 0 and unstable if f'(y;) > 0.

Suppose that a certain population obeys the logistic equation dy/dt = ry[1 — (y/K)].

(a) Ifyo = K/3,find the time 7 at which the initial population has doubled. Find the value
of 7 corresponding to r = 0.025 per year.

(b) If yo/K = «, find the time T at which y(7)/K = B, where 0 < «, 8 < 1. Observe that

T — oo as @ — 0 or as B — 1. Find the value of T for r = 0.025 per year, « = 0.1, and
B=0.9.



Chapter 2. First Order Differential Equations

16. Another equation that has been used to model population growth is the Gompertz!*
equation

dy/dt = ryIn(K/y),

where r and K are positive constants.

(a) Sketch the graph of f(y) versus y, find the critical points, and determine whether each
is asymptotically stable or unstable.

(b) For 0 <y < K, determine where the graph of y versus 7 is concave up and where it is
concave down.

(c) ForeachyinO < y < K,show that dy/dt as given by the Gompertz equation is never
less than dy/dt as given by the logistic equation.

17. (a) Solve the Gompertz equation
dy/dt = ryIn(K/y),

subject to the initial condition y(0) = yy.

Hint: You may wish to let u = In(y/K).

(b) For the data given in Example 1 in the text (r = 0.71 per year, K = 80.5 x 10° kg,
vo/K = 0.25), use the Gompertz model to find the predicted value of y(2).

(c) For the same data as in part (b), use the Gompertz model to find the time 7 at which
y(r) = 0.75K.

18. A pond forms as water collects in a conical depression of radius a and depth /. Suppose that
water flows in at a constant rate k and is lost through evaporation at a rate proportional
to the surface area.

(a) Show that the volume V(f) of water in the pond at time ¢ satisfies the differential
equation

dV /dt = k — an(3a/mh)**V?53,

where « is the coefficient of evaporation.
(b) Find the equilibrium depth of water in the pond. Is the equilibrium asymptotically
stable?
(c) Find a condition that must be satisfied if the pond is not to overflow.

19. Consider a cylindrical water tank of constant cross section A. Water is pumped into the
tank at a constant rate k and leaks out through a small hole of area a in the bottom
of the tank. From Torricelli’s principle in hydrodynamics (see Problem 6 in Section 2.3)
it follows that the rate at which water flows through the hole is aa\/@, where 4 is the
current depth of water in the tank, g is the acceleration due to gravity,and « is a contraction
coefficient that satisfies 0.5 < o < 1.0.

(a) Show that the depth of water in the tank at any time satisfies the equation
dh/dt = (k — aa\/2gh)/A.

(b) Determine the equilibrium depth /4, of water, and show that it is asymptotically stable.
Observe that 4, does not depend on A.

14Benjamin Gompertz (1779-1865) was an English actuary. He developed his model for population growth,
published in 1825, in the course of constructing mortality tables for his insurance company.
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26.

27.

28.

Asymptotically stable

-2 -1 1 2 3 4 a
\
N
N
gk S~ Unstable
2 T~

FIGURE 2.5.10 Bifurcation diagram for y’ = a — 2.

Consider the equation
dy/dt = ay —y* = y(a —y*). (iii)

(a) Again consider the cases a < 0,a = 0,and a > 0. In each case find the critical points,
draw the phase line, and determine whether each critical point is asymptotically stable,
semistable, or unstable.

(b) In each case sketch several solutions of Eq. (iii) in the ty-plane.

(c) Draw the bifurcation diagram for Eq. (iii)—that is, plot the location of the critical
points versus a. For Eq. (iii) the bifurcation point at a = 0 is called a pitchfork bifurcation.
Your diagram may suggest why this name is appropriate.

Consider the equation
dy/dt = ay —y* = y(a —y). (iv)

(a) Again consider the cases a < 0,a = 0,and a > 0. In each case find the critical points,
draw the phase line, and determine whether each critical point is asymptotically stable,
semistable, or unstable.

(b) In each case sketch several solutions of Eq. (iv) in the zy-plane.

(c) Draw the bifurcation diagram for Eq. (iv). Observe that for Eq. (iv) there are the
same number of critical points for a < 0 and a > 0 but that their stability has changed.
For a < 0 the equilibrium solution y = 0 is asymptotically stable and y = a is unstable,
while for a > 0 the situation is reversed. Thus there has been an exchange of stability as a
passes through the bifurcation point a = 0. This type of bifurcation is called a transcritical
bifurcation.

Chemical Reactions. A second order chemical reaction involves the interaction (colli-
sion) of one molecule of a substance P with one molecule of a substance Q to produce
one molecule of a new substance X; this is denoted by P + Q — X. Suppose that p and
q,where p # q, are the initial concentrations of P and Q, respectively, and let x(¢) be the
concentration of X at time ¢. Then p — x(¢) and g — x(¢) are the concentrations of P and
Q at time ¢, and the rate at which the reaction occurs is given by the equation

dx/dt = a(p — x)(q — x), @)

where « is a positive constant.

(a) If x(0) =0, determine the limiting value of x(z) as ¢t — oo without solving the
differential equation. Then solve the initial value problem and find x(¢) for any ¢.





