
2.4 Subgradient of Convex Function

In this section, we introduce the crucial concept of subgradient for convex func-
tions. It acts as generalized derivative for nonsmooth functions and has many
applications in optimization theory.

Definition:(Subgradient) Let f : Rn → R be a convex function and let
x ∈ domf . An element g ∈ Rn is called a subgradient of f at x if

f(x)− f(x) ≥ 〈g, x− x〉 for all x ∈ Rn

The collection of all subgradients of f is denoted by ∂f(x).

Proposition: Let f be a convex function and let x ∈ int(domf), then ∂f(x) is
nonempty and compact.

Proof. Since f is convex, epif is a convex set.
By the supporting hyperplane theorem to epif and the point (x, f(x)), there
exists (a, b) 6= 0 such that〈[

a
b

]
,

([
x
t

]
−
[

x
f(x)

])〉
≤ 0, for all (x, t) ∈ epif

By considering (x, t) ∈ epif, we must have b ≤ 0. Also

〈a, x− x〉+ b(f(x)− f(x)) ≤ 0 for all x

Suppose b = 0, this implies 〈a, x− x〉 ≤ 0.
This is impossible since x ∈ int(domf). Hence, b < 0. Then〈

− a

b
, x− x

〉
≤ f(x)− f(x)

Therefore, −ab ∈ ∂f(x) 6= ∅.
Recall that a function is locally Lipschitz continuous on the int(domf).
So there exists ε > 0 such that

f(x)− f(y) ≤ L||x− y||, for all x, y ∈ B(x; ε)

Let g ∈ ∂f(x). Consider x = x+ εg
||g|| , then

ε||g|| = 〈g, x− x〉 ≤ f(x)− f(x) ≤ L||x− x|| = Lε

Then we have ||g|| ≤ L. Therefore ∂f(x) is bounded.
It follows from the definition that ∂f(x) is closed and hence compact.

For a differentiable convex function, the subdifferential is just the usual gradient.
Proposition: Let f : Rn → R be convex and differentiable at x ∈ int(domf).
Then ∂f(x) = {∇f(x)}.
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Proof. Since f is convex, we have

〈∇f(x), x− x〉 ≤ f(x)− f(x) for all x ∈ Rn

So ∇f(x) ∈ ∂f(x).
Conversely, suppose g ∈ ∂f(x). Since f is differentiable at x, then for all ε > 0,
there exists δ > 0 such that

f(x)− f(x)− 〈∇f(x), x− x〉 ≤ ε||x− x|| for all x with ||x− x|| < δ

Then
〈g −∇f(x), x− x〉 ≤ ε||x− x|| for all x with ||x− x|| < δ

Hence ||g −∇f(x)|| ≤ ε. Since ε is arbitrary, this shows that g = ∇f(x).
Therefore, ∂f(x) = {∇f(x)}.

Example: Let f : R→ R be defined by

f(x) :=


0 x ∈ [−1, 1]

|x| − 1 x ∈ [−2, 1) ∪ (1, 2]

∞ x ∈ (−∞,−2) ∪ (2,∞)

For x ∈ (−2, 1), (−1, 1) and (1, 2), f is differentiable, hence ∂f(x) = {∇f(x)}.
For x ∈ (−∞,−2) ∪ (2,∞), f(x) =∞, hence ∂f(x) = ∅.
For x = 1, we show that ∂f(x) = [0, 1]. Let g ∈ ∂f(1). Then

f(y) ≥ g(x− 1) for all y

If y ∈ [1, 2], then x− 1 ≥ g(x− 1), that is 1 ≥ g.
If y ∈ [−1, 1], then 0 ≥ g(x− 1), so g(1− x) ≥ 0 and g ≥ 0.
It is easy to check that for g ∈ [0, 1], g satisfies

f(y) ≥ f(1) + g(x− 1) for all y

Hence, ∂f(1) = [0, 1].
The subdifferential of other points can be found similarly.
We have

∂f(x) =



∅ x ∈ (−∞,−2) ∪ (2,∞)

(−∞,−1] x = −2

{−1} x ∈ (−2,−1)

[−1, 0] x = −1

{0} x ∈ (−1, 1)

[0, 1] x = 1

{1} x ∈ (1, 2)

[1,∞) x = 2

The following results show the relationship between subgradients and conjugate
of convex functions.
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Proposition: Let f : Rn → R be a function with domf 6= ∅. Then

〈x, y〉 ≤ f(x) + f∗(y) for all x, y

Proof. By the definition of conjugate function, f∗(y) ≥ 〈x, y〉 − f(x).

Theorem: Let f : Rn → R be convex with x ∈ domf . Then g ∈ ∂f(x) if and
only if

f(x) + f∗(g) = 〈g, x〉

Proof. Suppose g ∈ ∂f(x), then

f(x) + 〈g, y〉 − f(y) ≤ 〈g, x〉, for all y

Then f(x) + f∗(g) ≤ 〈g, x〉. Hence by the above proposition, we have

f(x) + f∗(g) = 〈g, x〉

Suppose f(x) + f∗(g) = 〈g, x〉, then by the definition of conjugate function,

f∗(g) ≥ 〈g, y〉 − f(y) for all y

Since f∗(g) = 〈g, x〉 − f(x), we have

〈g, x〉 − f(x) ≥ 〈g, y〉 − f(y) for all y

Therefore, g ∈ ∂f(x).

2.5 Basic Calculus Rules

Proposition: Let f : Rm → R be a convex function. Let F be defined by

F (x) = f(Ax)

where A ∈ Rm×n. Then
AT∂f(Ax) ⊆ ∂F (x)

Proof. Suppose AT g ∈ AT∂f(Ax), where g ∈ ∂f(Ax). Then

F (y)− F (x)− 〈AT g, y − x〉 = f(Ay)− f(Ax)− 〈g,Ay −Ax〉 ≥ 0

Theorem:(Moreau-Rockafellar) Let f, g : Rn → (−∞,∞] be proper convex
functions. Then for every x0 ∈ Rn

∂f(x0) + ∂g(x0) ⊂ ∂(f + g)(x0)

Moreover, suppose int dom(f) ∩ dom(g) 6= ∅. Then for every x0 ∈ Rn,

∂f(x0) + ∂g(x0) = ∂(f + g)(x0)
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Proof. Let u1 ∈ ∂f(x0), u2 ∈ ∂g(x0). Then for every x ∈ Rn,

f(x) ≥ f(x0) + 〈u1, x− x0〉, g(x) ≥ g(x0) + 〈u2, x− x0〉

Hence, adding the two inequalities shows that u+ v ∈ ∂(f + g)(x0).
Now, let v ∈ ∂(f + g)(x0). Note that f(x0) 6= ∞, otherwise this implies that
f + g ≡ ∞. Similarly, g(x0) 6=∞. Next, consider the following two sets

Λf := {(x− x0, y) : y > f(x)− f(x0)− 〈v, x− x0〉}
Λg := {(x− x0, y) : −y ≥ g(x)− g(x0)}.

Λf ,Λg are both nonempty and convex (consider epi(f), epi(g)). Also, since
v ∈ ∂(f + g)(x0), Λf ∩ Λg = ∅ (otherwise, adding the above two inequalities
contradict the fact that v ∈ ∂(f + g))
Then Λf ,Λg can be separated by a hyperplane. So there exists (a, b) 6= 0, c such
that

〈a, x− x0〉+ by ≤ c, ∀(x, y) such that y > f(x)− f(x0)− 〈v, x− x0〉

〈a, x− x0〉+ by ≥ c, ∀(x, y) such that − y ≥ g(x)− g(x0)

Since (0, 0) ∈ Λg, c ≤ 0. Since (0, 1) ∈ Λf , b ≤ 0.
For all ε > 0, (0, ε) ∈ Λf , since b ≤ 0, letting ε→ 0, we get c ≥ 0. Hence c = 0.
Suppose b = 0, we have

〈a, x− x0〉 ≤ 0, ∀(x, y) such that y > f(x)− f(x0)− 〈v, x− x0〉

〈a, x− x0〉 ≥ 0, ∀(x, y) such that − y ≥ g(x)− g(x0)

which are equivalent to

〈a, x− x0〉 ≤ 0, ∀x ∈ dom(f)

〈a, x− x0〉 ≥ 0, ∀x ∈ dom(g)

Let x ∈ int dom(f)∩dom(g). Then 〈a, x−x0〉 = 0. Since x ∈ int dom(f), there
exists δ > 0 such that B(x, δ) ⊂ dom(f). Then

〈a, δa
2
〉 = 〈a, x+

δa

2
− x0〉 ≤ 0

So a = 0. This contradicts the fact that (a, b) 6= 0. Hence b < 0.
Let −u2 = a

−b , we have

〈−u2, x− x0〉 ≤ y, ∀(x, y) such that y > f(x)− f(x0)− 〈v, x− x0〉.

〈−u2, x− x0〉 ≥ y,∀(x, y) such that − y ≥ g(x)− g(x0)

Consider y = g(x0)− g(x), then u2 ∈ ∂g(x0).
By considering (x, f(x) − f(x0) − 〈v, x − x0〉 + ε and letting ε → 0, we have
u1 = v − u2 ∈ ∂f(x0).
Hence v = u1 + u2 ∈ ∂f(x0) + ∂g(x0).
Therefore ∂(f + g)(x0) ⊂ ∂f(x0) + ∂g(x0).
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2.5.1 Directional Derivative

Definition:(Directional Derivative) Let f : Rn → R be a function with
x ∈ domf . The directional derivative of f at x with direction d is given by

f ′(x; d) = lim
t→0+

f(x+ td)− f(x)

t

Lemma: Let f : Rn → R be a convex function with x ∈ domf . Then for all
direction d ∈ Rn and λ1, λ2 ∈ R with λ2 > λ1 > 0, we have

f(x+ λ1d)− f(x)

λ1
≤ f(x+ λ2d)− f(x)

λ2

Proof. Note that x+ λ1d = λ1

λ2
(x+ λ2d) + (1− λ1

λ2
)x. Then

f(x+ λ1d) ≤ λ1
λ2
f(x+ λ2d) + (1− λ1

λ2
)f(x)

The result follows from the above inequality.

Lemma: Let f : Rn → R be a convex function with x ∈ int(domf). Then
f ′(x; d) is finite for every direction d ∈ Rn.

Proof. Recall that f is locally Lipschitz at x. Then for t small,∣∣f(x+ td)− f(x)

t

∣∣ ≤ Lt||d||
t
≤ L||d|| <∞

Theorem: Let f : Rn → R be a convex function with x ∈ int(domf). Then

f ′(x; d) = sup
g∈∂f(x)

〈g, d〉

Proof. By the above proposition, we have f ′(x; d) = inft>0
f(x+td)−f(x)

t .
Define ψ(d) := f ′(x; d). Then ψ is convex and finite for every d.
Therefore, ψ is continuous and hence closed.
Hence, ψ = ψ∗∗ = supg{〈g, d〉 − ψ∗(g)}.
We will show that

ψ∗(g) =

{
0 g ∈ ∂f(x)

∞ otherwise

Note that ψ(0) = 0. Then for all g,

ψ∗(g) ≥ 〈g, 0〉 − ψ(0) = 0

Suppose g ∈ ∂f(x). Then 〈g, d〉 − ψ(d) ≤ f(x+td)−f(x)
t − ψ(d) for all t > 0. So

〈g, d〉 − ψ(d) ≤ f(x; d)− ψ(d) = 0 for all d
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Therefore, ψ∗(g) = supd{〈g, d〉 − ψ(d)} ≤ 0.
Suppose g /∈ ∂f(x). Then there exists y such that

〈g, y − x〉 ≥ f(y)− f(x)

Write y = x+ d0, then we have 〈g, d0〉 ≥ f(x+ d0)− f(x) ≥ f ′(x; d0).
Note that tψ(d) = ψ(td), then

ψ∗(g) = sup
d
{〈g, d〉 − ψ(d)} ≥ sup

t>0
{〈g, td〉 − ψ(td)} = sup

t>0
{t(〈g, d〉 − ψ(d))} ≥ ∞

Consider ψ∗∗(g) = supd{〈g, d〉 − ψ∗(g)}.
It follows that ψ∗∗(g) = supg∈∂f(x)〈g, d〉.
Hence, f ′(x; d) = ψ(d) = ψ∗∗(d) = supg∈∂f(x)〈g, d〉.

Theorem:(Dubovitskii-Milyutin) Let f1, ..., fm : Rn → R be convex func-
tions and let x ∈ ∩mint(domfi). Let f : Rn → R be given by

f(x) := max
m

fi(x)

and let I(x) = {i| fi(x) = f(x)}. Then

∂f(x) = conv
( ⋃
i∈I(x)

∂fi(x)
)
.

Proof. Note that if g ∈ ∂fi(x), then g ∈ ∂f(x) for all i ∈ I(x).
Also, since ∂f(x) is convex, then conv

(⋃
i∈I(x) ∂fi(x)

)
⊆ ∂f(x).

So suppose g0 ∈ ∂f(x) but g0 /∈ conv
(⋃

i∈I(x) ∂fi(x)
)
.

Note that conv
(⋃

i∈I(x) ∂fi(x)
)

is compact (Each ∂fi(x) is compact).
Then there exists d such that

〈g0, d〉 > max
i∈I(x)

sup
g∈∂fi(x)

〈g, d〉 = max
i∈I(x)

f ′i(x; d)

We claim that f ′(x; d) = maxi∈I(x) f
′
i(x; d). Then 〈g0, d〉 > f ′(x; d).

But since g0 ∈ ∂f(x), then f(x+ td)− f(x) ≥ 〈g0, d〉 for all t > 0.
Then f ′(x; d) ≥ 〈g0, d〉. This is a contradiction.
Therefore g0 ∈ conv

(⋃
i∈I(x) ∂fi(x)

)
.

It remains to prove that f ′(x; d) = maxi∈I(x) f
′
i(x; d). First for all t > 0,

f(x+ td)− f(x)

t
≥ fi(x+ td)− fi(x)

t
for all i ∈ I(x)

Then f ′(x; d) ≥ f ′i(x; d). Consider {tk} with tk ↓ 0 and xk = x+ tkd.
Then there exists i such that i ∈ I(xk) for infinitely many k.
Without loss of generality, assume i ∈ I(xk) for all k.
Then fi(xk) ≥ fi(xk) for all i, k.
Taking limit and since fi are continuous at x, we have

fi(x) ≥ fi(x) for all i

6



Hence

f ′(x; d) = lim
k→∞

f(x+ tkd)− f(x)

tk
= lim
k→∞

fi(x+ tkd)− fi(x)

tk
= f ′

i
(x; d)

Therefore, f ′(x; d) = maxi∈I(x) f
′
i(x; d).
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3 Duality and Optimal Conditions

3.1 Standard forms of optimization problems

In this section, we introduce some of the most basic forms of convex optimization
problems.

3.1.1 Linear Programs

A linear program (LP) is a problem of the form

min
x

cTx

Ax = b

x ≥ 0

3.1.2 Quadratic Programs

A Quadratic program is a problem of the form

min
x

1

2
xTQx+ cTx

Ax = b

x ≥ 0

3.1.3 Semi-definite Programs (SDP)

A semi-definite program (SDP) is a problem of the form

min
X

C •X

Ai •X = bi i = 1, 2..., p

X � 0

3.1.4 Conic Programs

A conic program is a problem of the form

min
x

cTx

Ax = b

x ∈ K

where K is a closed convex cone.
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3.2 Basics of Convex Optimization

Let’s consider the problem
min
x∈C

f(x)

where f : Rn → R is a convex function and C is a convex subset of Rn.

Definition: A point x ∈ C ∩ domf is called a feasible point.
If there is at least one feasible point, then the problem is called feasible.
A point x∗ is called a minimum of f over C if

x∗ ∈ C ∩ domf, f(x∗) = inf
x∈C

f(x)

We may write x∗ ∈ arg minx∈C f(x) or even x∗ = arg minx∈C f(x) if x∗ is the
unique minimizer.

Other than global minimum, we also have a weaker definition of local mini-
mum, one that is only minimum compared to the points nearby.

Definition:(Local minimizer) We call x∗ a local minimum of f over C if
x∗ ∈ C ∩ domf and there exists ε > 0 such that

f(x∗) ≤ f(x), ∀x ∈ C with ||x− x∗|| < ε

In the convex setting, we have the following nice result.

Proposition: Let f : Rn → R be a convex function and let C be a convex
set. Then a local mimimum of f over C is also a global minimum of f over C.
If f is strictly convex, then there exists at most one global minimum of f over
C.

Proof. Suppose x∗ is a local minimum that is not global.
Then there exists x such that f(x) < f(x∗). Then for λ ∈ (0, 1),

f(λx∗ + (1− λ)x) ≤ λf(x∗) + (1− λ)f(x) < f(x∗)

Since f has smaller value on the line connecting x and x∗, this contradicts the
local minimality of x∗.
Suppose f is strictly convex, let x∗ be a global minimum of f over C. Let x ∈ C
such that x 6= x∗. Consider y = (x+ x∗)/2. Then y ∈ C and

f(y) <
1

2
(f(x) + f(x∗)) ≤ f(x)

Since x∗ is a global minimum, f(x∗) ≤ f(y).
Then f(x∗) < f(x). Hence x∗ is the unique global minimum of f over C.
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3.2.1 Existence of solution

Let’s consider a general optimization problem

min
x∈C

f(x)

where f : Rn → R and C ⊆ Rn.
A basic question is whether a solution to the above problem exists.
Recall the famous Weierstrass theorem. Proposition: If f is continuous and
C is compact, then there exists a global minimum.

In order to consider cases where C is not bounded (e.g. Rn), we need a new
notation.

Definition: (Coercivity) A function f : Rn → R is called coercive if for
all sequence {xk} with ‖xk‖ → ∞, we have limk→∞ f(xk) =∞.

Lemma: Let f : Rn → R be a continuous function. Then the following are
equivalent.

1. All level sets of f are compact, i.e. {x| f(x) ≤ a} is compact for all a.

2. f is coercive.

Proof. Suppose all level sets of f are compact. Suppose {xk} is a sequence with
||xk|| → ∞. Suppose f(xk) 6→ ∞. Then there exists subsequence xkj such that
f(xkj ) is bounded by α for some α. Then {xkj} ⊂ Vα. This contradicts the
compactness of Vα. Hence, f is coercive.
Conversely, suppose f is coercive. Suppose Vα is not compact for some α. Since
f is continuous, Vα must be closed, this means Vα is not bounded.
Hence, there exists a sequence {xk} ⊂ Vα such that ||xk|| → ∞. This contradicts
the coercivity of f since f(xk) ≤ α.

Proposition: Suppose f is lower-semicontinuous and coercive. Suppose C is
non-empty and closed. Then f has a global minimum over C.

Proof. We may assume that f(x) <∞ for some x ∈ C. Then f∗ = infx∈C f(x) <
∞.
Let {xk} ⊂ C be a sequence such that lim f(xk) = f∗ < ∞. Then since f is
coercive, {xk} is bounded. Then there exists a subsequence xkj converging to
a point x∗.
Since C is closed, x∗ ∈ C. Then

f∗ = lim
k→∞

f(xk) = lim
j→∞

f(xkj ) ≥ f(x∗)

Therefore, x∗ is a global minimmum of f over C.
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3.2.2 Optimal condition

For a unconstrained problem, one has a simple optimality test, which is the
’derivative’ test in calculus.

Let f be a differentiable convex function on Rn. Then x∗ solves

min
x∈Rn

f(x)

if and only if ∇f(x∗) = 0. How about a constrained problem?
Let’s consider the general constrained problem

min
x∈C

f(x)

where C is a convex set, and f is convex.
We have the following result.

Proposition: Let C be a nonempty convex set and let f : Rn → R be a
convex differentiable function over an open set that contains C. Then x∗ ∈ C
minimizes f over C if and only if

〈∇f(x∗), (z − x∗)〉 ≥ 0, ∀z ∈ C.

Proof. Suppose 〈∇f(x∗), (z − x∗)〉 ≥ 0, ∀z ∈ C, then we have,

f(z)− f(x∗) ≥ 〈∇f(x∗), (z − x∗)〉 ≥ 0, ∀z ∈ C.

Hence x∗ indeed minimizes f over C.
Conversely, suppose x∗ minimizes f over C. Suppose on the contrary that
〈∇f(x∗), (z − x∗)〉 < 0 for some z ∈ C, then

lim
α↓0

f(x∗ + α(z − x∗))− f(x∗)

α
= 〈∇f(x∗), (z − x∗)〉 < 0.

Then for sufficiently small α, we have f(x∗+α(z−x∗))−f(x∗) < 0, contradicting
the optimality of x∗.

Examples (a) Let’s consider the following linear constrained problem.

min
x∈Rn

f(x) subject to Ax = b

where A is a m× n matrix and b ∈ Rm.
Suppose we have a solution x∗, then

〈∇f(x∗), y − x∗〉 ≥ 0, ∀y such that Ay = b

This is the same as
〈∇f(x∗), h〉 ≥ 0, ∀h ∈ N(A).
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Since −h ∈ N(A) if h ∈ N(A), we have

〈∇f(x∗), h〉 = 0, ∀h ∈ N(A).

Hence ∇f(x∗) ∈ N(A)⊥ = R(AT ).
So there exists µ ∈ Rm such

∇f(x∗) +ATµ = 0.

To conclude, x∗ is a solution to the minimization problem if and only if

1. Ax∗ = b

2. There exists µ∗ ∈ Rm such that ∇f(x∗) +ATµ = 0.

(b) Let’s consider the minimization problem

min
x∈Rn

f(x), subject to x ≥ 0.

Suppose we have a solution x∗, then

〈∇f(x∗), y − x∗〉 ≥ 0, ∀y ∈ Rn+.

In particular, 0, 2x∗ ∈ Rn+, so

〈∇f(x∗), x∗〉 = 0, 〈∇f(x∗), y〉 ≥ 0, ∀y ∈ Rn+.

Hence, ∇f(x∗) ≥ 0. This is the same as saying there exists λ∗ ≥ 0 such that

∇f(x∗)− λ∗ = 0

To conclude, x∗ is a solution if and only if

1. x∗ ≥ 0

2. There exists λ∗ ≥ 0 such that ∇f(x∗)− λ∗ = 0

3. λ∗i x
∗
i = 0

12


