
2.2 Lipschitz Continuity

In this section, we focus on the Lipschitz continuity of convex functions.
First, we start with some lemmas.

Lemma: Let {e1, ..., en} denote the standard basis of Rn. Let A := {x± εei}
Then the following holds:

1. x+ δei ∈ conv(A) for |δ| ≤ ε

2. B(x; ε/n) ⊂ conv(A)

Proof. 1. Since |δ| ≤ ε, there exists λ such that δ = λ(−ε) + (1− λ)ε. Then,

x+ δei = λ(x− εei) + (1− λ)(x+ εei) ∈ conv(A)

2. Let y ∈ B(x; ε/n). Then y = x+ ε
nu, where ||u|| ≤ 1. Write u =

∑n
i=1 λiei,

then

|λi| ≤

√√√√ n∑
i=1

λ2i ≤ 1

So

y = x+
ε

n
u = x+

ε

n

n∑
i=1

λiei =

n∑
i=1

1

n
(x+ ελiei)

Since x+ ελiei ∈ conv(A), y ∈ conv(A). Hence B(x; εn ) ⊆ conv(A).

Lemma: If a convex function f : Rn → R is bounded above on B(x; δ) for some
x ∈ domf and δ > 0, then f is bounded on B(x, δ).

Proof. Suppose f(x) ≤M for all x ∈ B(x, δ). Let f(x) = m.
Suppose x ∈ B(x; δ) Let u := x+ (x− x) = 2x− x. Then u ∈ B(x, δ). We have

m = f(x) = f(
x+ u

2
) ≤ 1

2
f(x) +

1

2
f(u)

Therefore, f(x) ≥ 2f(x)− f(u) ≥ 2m−M . Hence f is bounded on B(x, δ).

Theorem: Let f : Rn → R be convex with x ∈ domf . Suppose f is bounded
on B(x, δ) for some δ > 0, then f is Lipschitz continuous on B(x; δ2 ).

Proof. Let x, y ∈ B(x; δ2 ) with x 6= y. Suppose f ≤M on B(x; δ). Let

u := x+
δ

2||x− y||
(x− y)

then u ∈ x+ δ
2B ⊂ x+ δB. Also

x =
1

α+ 1
u+

α

α+ 1
y
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where α = δ
2||x−y|| . Then

f(x)− f(y) ≤ 1

α+ 1
f(u) +

α

α+ 1
f(y)− f(y)

=
1

α+ 1
(f(u)− f(y)) ≤ 2M

α+ 1

=
4M ||x− y||
δ + 2||x− y||

≤ 4M ||x− y||
δ

Proposition: A convex function f : Rn → R is locally Lipschitz continuous on
int(domf).

Proof. Let x ∈ int(domf) and let ε > 0 be such that x ± εei ∈ domf for all i.
Let A := {x± εei}. Then B(x; εn ) ⊆ conv(A). Let M := max{f(a)| a ∈ A}.
Pick x ∈ B(x; εn ), then

x =
∑

λi(x+ εei), with
∑

λi = 1

Hence
f(x) ≤

∑
λif(x+ εei) ≤M

Then f is bounded above on B(x; εn ). Hence, by the previous theorem, f is
Lipschitz continuous on B(x; ε

2n )

2.3 Conjugate Functions

In the next chapter, we will consider the concept of duality. One notion that is
crucial in the theory of duality is the conjugate function.

Definition:(Conjugate function) Let f : Rn → R be a function. The conju-
gate function of f is the function f∗ : Rn → [−∞,∞] defined by

f∗(y) = sup
x∈Rn

{〈x, y〉 − f(x)}

Note that f∗ is convex even if f is not convex.

Examples of conjugate functions

1. f(x) = ||x||1

f∗(a) = sup
x∈Rn

〈x, a〉 − ||x||1

= sup
∑

(anxn − |xn|)

=

{
0 ||a||∞ ≤ 1

∞ otherwise
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2. f(x) = ||x||∞

f∗(a) = sup
x∈Rn

∑
anxn −max

n
|xn|

≤ sup
∑
|an||xn| −max

n
|xn|

≤ max
n
|xn|||a||1 −max

n
|xn|

≤ sup ||x||∞(||a||1 − 1)

=

{
0 ||a||1 ≤ 1

∞ otherwise

If ||a||1 ≤ 1, 〈0, a〉 − ||0||∞ = 0, f∗(a) ≥ 0 in this case.
If ||a||1 > 1, then 〈x, a〉 − ||x||∞ is unbounded. Hence

f∗(a) =

{
0 ||a||1 < 1

∞ otherwise

We can also consider the conjugate of f∗ (double conjugate of f). It is given by

f∗∗(x) = sup
y∈Rn

{〈y, x〉 − f∗(y)}

It is natural to ask whether f = f∗∗. Indeed, this is true under some conditions.

Theorem: Let f : Rn → R be a function. Then:

1. f(x) ≥ f∗∗(x) for all x ∈ Rn.

2. If f is closed, proper and convex, then f(x) = f∗∗(x).

Proof. 1 For all x and y, we have

f∗(y) ≥ 〈x, y〉 − f(x)

So f(x) ≥ 〈x, y〉 − f∗(y) for all x, y. (*)
Therefore, f(x) ≥ sup{〈x, y〉 − f∗(y)} = f∗∗(x).
2 By (1), we have epif ⊆ epif∗∗. We need to show epif∗∗ ⊆ epif .
It suffices to show that (x, f∗∗(x)) ∈epif . So suppose not.
Since epif is a closed convex set, (x, f∗∗(x)) can be strictly separated from epif .
Hence

〈y, z〉+ bs < c < 〈y, x〉+ bf∗∗(x)

for some y, b, c, and for all (z, s) ∈ epif .
We may assume b 6= 0 (If not, add ε(y,−1) to (y, b) for some y ∈domf∗).
We must have b < 0. Since if b > 0, we have a contradiction by choosing s large.
Therefore, we further assume b = −1. Hence, in particular, we have

〈y, z〉 − f(z) < c < 〈y, x〉 − f∗∗(x)
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Then taking supremum over z, we have

f∗(y) + f∗∗(x) < 〈x, y〉

This is a contradiction to (*). Hence epif∗∗ = epif .
Therefore, f = f∗∗.

2.4 Subgradient of Convex Function

In this section, we introduce the crucial concept of subgradient for convex func-
tions. It acts as generalized derivative for nonsmooth functions and has many
applications in optimization theory.

Definition:(Subgradient) Let f : Rn → R be a convex function and let
x ∈ domf . An element g ∈ Rn is called a subgradient of f at x if

f(x)− f(x) ≥ 〈g, x− x〉 for all x ∈ Rn

The collection of all subgradients of f is denoted by ∂f(x).

Proposition: Let f be a convex function and let x ∈ int(domf), then ∂f(x) is
nonempty and compact.
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