1.3.2 Characterizations of Differentiable Convex Functions

We now give some characterizations of convexity for once or twice differentiable functions.

Proposition: Let C be a nonempty convex open set. Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable over an open set that contains C.

- (a) f is convex if and only if $f(z) \ge f(x) + \langle \nabla f(x), (z-x) \rangle$, for all $x, z \in C$.
- (b) f is stricly convex if and only if the above inequality is strict for $x \neq z$.

Proof. (\Leftarrow) Let $x, y \in C, \alpha \in [0, 1]$ and $z = \alpha x + (1 - \alpha)y$. We have,

$$\begin{aligned} f(x) &\geq f(z) + \langle \nabla f(z), (x-z) \rangle \\ f(y) &\geq f(z) + \langle \nabla f(z), (y-z) \rangle. \end{aligned}$$

Then,

$$\alpha f(x) + (1-\alpha)f(y) \ge f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(\alpha x + (1-\alpha)y) = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z) + \langle f(z), (\alpha(x-z) + (1-\alpha)(y-z)) \rangle = f(z) = f(z)$$

Hence f is convex.

Conversely, suppose f is convex. For $x \neq z$, define $g: (0,1] \to \mathbb{R}$ by

$$g(\alpha) = \frac{f(x + \alpha(z - x)) - f(x)}{\alpha}$$

Consider α_1, α_2 with $0 < \alpha_1 < \alpha_2 < 1$. Let $\overline{\alpha} = \frac{\alpha_1}{\alpha_2}$ and $\overline{z} = x + \alpha_2(z - x)$. Then $f(x + \overline{\alpha}(\overline{z} - x)) \leq \overline{\alpha}f(\overline{z}) + (1 - \overline{\alpha})f(x)$. So,

$$\frac{f(x+\overline{\alpha}(\overline{z}-x))-f(x)}{\overline{\alpha}} \le f(\overline{z}) - f(x).$$

Therefore,

$$\frac{f(x + \alpha_1(z - x)) - f(x)}{\alpha_1} \le \frac{f(x + \alpha_2(z - x)) - f(x)}{\alpha_2}$$

So, $g(\alpha_1) \leq g(\alpha_2)$, that is, g is monotonically increasing. Then $\langle \nabla f(x), (z-x) \rangle = \lim_{\alpha \downarrow 0} g(\alpha) \leq g(1) = f(z) - f(x)$. So we are done. The proof for (b) is the same as (a), we just change all inequality to strict inequality.

For twice differentiable functions, we have the following characterization. **Proposition:** Let C be a nonempty convex set $\subset \mathbb{R}^n$ and $f : \mathbb{R}^n \to \mathbb{R}$ be twice differentiable over an open set that contains C. Then:

- (a) If $\nabla^2 f(x)$ is positive semidefinite for all $x \in C$, then f is convex over C.
- (b) If $\nabla^2 f(x)$ is positive definite for all $x \in C$, then f is strictly convex over C.

(c) If C is open and f is convex over C, then $\nabla^2 f(x)$ is positive semidefinite for all $x \in C$.

Proof. (a) For all $x, y \in C$,

$$f(y) = f(x) + \langle \nabla f(x), (y - x) \rangle + \frac{1}{2} (y - x)^T \nabla^2 f(x + \alpha (y - x))(y - x)$$

for some $\alpha \in [0, 1]$. Since $\nabla^2 f$ is positive semidefinite, we have

$$f(y) \ge f(x) + \langle \nabla f(x), (y-x) \rangle, \forall x, y \in C.$$

Hence, f is convex over C.

(b) We have $f(y) > f(x) + \langle \nabla f(x), (y-x) \rangle$ for all $x.y \in C$ with $x \neq y$ since $\nabla^2 f$ is positive definite.

(c) Assume there exist $x \in C$ and $z \in \mathbb{R}^n$ such that $z^T \nabla^2 f(x) z < 0$. For z with sufficiently small norm, we have $x + z \in C$ and $z^T \nabla^2 f(x + \alpha z) z < 0$ for all $\alpha \in [0, 1]$. Then

$$f(x+z) = f(x) + \langle \nabla f(x), z \rangle + z^T \nabla^2 f(x+\alpha z) z < f(x) + \langle \nabla f(x), z \rangle.$$

This contradicts the convexity of f over C. Hence, $\nabla^2 f$ is indeed positive semidefinite over C.

1.4 Relative Interior

Consider $I = [0, 1] \subset \mathbb{R}$. Then the interior of I is (0,1). However, if we consider I as a subset in \mathbb{R}^2 , then the interior of I is empty. This motivates the following definition.

Definition:(Relative Interior) Let $C \subset \mathbb{R}^n$. We say that x is a *relative interior point* of C if $x \in B(x; \epsilon) \cap \operatorname{aff}(C) \subset C$, for some $\epsilon > 0$. The set of all relative interior point of C is called the *relative interior* of C, and is denoted by $\operatorname{ri}(C)$. The *relative boundary* of C is equal to $\operatorname{cl}(C) \setminus \operatorname{ri}(C)$.

Lemma: Let Δ_m be an m-simplex in \mathbb{R}^n with $m \ge 1$. Then $\operatorname{ri}(\Delta_m) \neq \emptyset$.

Proof. Let $x_0, ..., x_m$ be the vertices of Δ_m . Let

$$\overline{x} := \frac{1}{m+1} \sum_{i=0}^{m} x_i$$

Note that $V := \operatorname{span}\{x_1 - x_0, ..., x_m - x_0\}$ is the m-dimensional subspace parallel to $\operatorname{aff}(\Delta_m) = \operatorname{aff}(\{x_0, ..., x_m\}).$

Hence for all $x \in V$, there exists unique λ_i such that

$$x = \sum_{i=1}^{m} \lambda_i (x_i - x_0)$$

Let $\lambda_0 := -\sum_{i=1}^m \lambda_i$, then $(\lambda_0, ..., \lambda_m) \in \mathbb{R}^{m+1}$ and

$$x = \sum_{i=0}^{m} \lambda_i x_i$$
, with $\sum_{i=0}^{m} \lambda_i = 0$

Let $L: V \to \mathbb{R}^{m+1}$ be the mapping that sends x to $(\lambda_0, ..., \lambda_m)$. It is easy to check that L is linear and thus continuous. Hence there exists δ such that

$$||L(u)|| < \frac{1}{m+1} \text{ if } ||u|| < \delta$$

Let $x \in (\overline{x} + B(0, \delta)) \cap \operatorname{aff}(\Delta_m)$ Then, $x = \overline{x} + u$, where $||u|| < \delta$. Since $x, \overline{x} \in \operatorname{aff}(\Delta_m)$ and $u = x - \overline{x}$, $u \in V$. Hence $||L(u)|| < \frac{1}{m+1}$. Suppose $L(u) = (\mu_0, ..., \mu_m)$, then $u = \sum_{i=0}^m \mu_i x_i$ and $x = \sum_{i=0}^m (\frac{1}{m+1} + \mu_i) x_i$. Since $\sum_{i=0}^m \mu_i = 0$, $\sum_{i=0}^m (\frac{1}{m+1} + \mu_i) = 1$. Therefore, $x \in \Delta_m$. Thus $(\overline{x} + B(0; \delta)) \cap \operatorname{aff}(\Delta_m) \subset \Delta_m$, so $\overline{x} \in \operatorname{ri}(\Delta_m)$.

Proposition: Let C be a nonempty convex set. Then ri(C) is nonempty.

Proof. Let m be the dimension of C. If m = 0, then C must be a singleton. Hence $\operatorname{ri}(C) \neq \emptyset$. Suppose $m \ge 1$. We first show that there exists m + 1 affinely independent elements $x_0, ..., x_m \in C$. Let $\{x_0, ..., x_k\}$ be a maximal affinely independent set in C. Consider $K := \operatorname{aff}(\{x_0, ..., x_k\})$. $K \subseteq \operatorname{aff}(C)$ since $\{x_0, ..., x_m\} \subset C$. Suppose $y \in C$ but $y \notin K$. Then, $\{x_0, ..., x_k, y\}$ is also affinely independent, which is a contradiction. Therefore $C \subseteq K$ and hence $\operatorname{aff}(C) \subseteq K$. Then

$$k = \dim(K) = \dim(\operatorname{aff}(C) = m$$

Therefore, there exists m + 1 affinely independent elements $x_0, ..., x_m \in C$. Let Δ_m be the m-simplex formed by $\{x_0, ..., x_m\}$. By above, $\operatorname{aff}(\Delta_m) = \operatorname{aff}(C)$. Since $\operatorname{ri}(\Delta_m)$ is not empty, it follows that $\operatorname{ri}(C)$ is also nonempty. \Box