
1.3.2 Characterizations of Differentiable Convex Functions

We now give some characterizations of convexity for once or twice differentiable
functions.

Proposition: Let C be a nonempty convex open set. Let f : Rn → R be
differentiable over an open set that contains C.

(a) f is convex if and only if f(z) ≥ f(x) + 〈∇f(x), (z − x)〉, for all x, z ∈ C.

(b) f is stricly convex if and only if the above inequality is strict for x 6= z.

Proof. (⇐= ) Let x, y ∈ C, α ∈ [0, 1] and z = αx+ (1− α)y. We have,

f(x) ≥ f(z) + 〈∇f(z), (x− z)〉

f(y) ≥ f(z) + 〈∇f(z), (y − z)〉.

Then,

αf(x)+(1−α)f(y) ≥ f(z)+〈f(z), (α(x−z)+(1−α)(y−z))〉 = f(z) = f(αx+(1−α)y)

Hence f is convex.
Conversely, suppose f is convex. For x 6= z, define g : (0, 1]→ R by

g(α) =
f(x+ α(z − x))− f(x)

α
.

Consider α1, α2 with 0 < α1 < α2 < 1. Let α = α1

α2
and z = x + α2(z − x).

Then f(x+ α(z − x)) ≤ αf(z) + (1− α)f(x). So,

f(x+ α(z − x))− f(x)

α
≤ f(z)− f(x).

Therefore,

f(x+ α1(z − x))− f(x)

α1
≤ f(x+ α2(z − x))− f(x)

α2
.

So, g(α1) ≤ g(α2), that is, g is monotonically increasing.
Then 〈∇f(x), (z − x)〉 = limα↓0 g(α) ≤ g(1) = f(z)− f(x). So we are done.
The proof for (b) is the same as (a), we just change all inequality to strict
inequality.

For twice differentiable functions, we have the following characterization.
Proposition: Let C be a nonempty convex set ⊂ Rn and f : Rn → R be twice
differentiable over an open set that contains C. Then:

(a) If ∇2f(x) is positive semidefinite for all x ∈ C, then f is convex over C.

(b) If ∇2f(x) is positive definite for all x ∈ C, then f is strictly convex over C.
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(c) If C is open and f is convex over C, then ∇2f(x) is positive semidefinite
for all x ∈ C.

Proof. (a) For all x, y ∈ C,

f(y) = f(x) + 〈∇f(x), (y − x)〉+
1

2
(y − x)T∇2f(x+ α(y − x))(y − x)

for some α ∈ [0, 1]. Since ∇2f is positive semidefinite, we have

f(y) ≥ f(x) + 〈∇f(x), (y − x)〉,∀x, y ∈ C.

Hence, f is convex over C.
(b) We have f(y) > f(x) + 〈∇f(x), (y − x)〉 for all x.y ∈ C with x 6= y since
∇2f is positive definite.
(c) Assume there exist x ∈ C and z ∈ Rn such that zT∇2f(x)z < 0. For z
with sufficiently small norm, we have x + z ∈ C and zT∇2f(x + αz)z < 0 for
all α ∈ [0, 1]. Then

f(x+ z) = f(x) + 〈∇f(x), z〉+ zT∇2f(x+ αz)z < f(x) + 〈∇f(x), z〉.

This contradicts the convexity of f over C. Hence, ∇2f is indeed positive
semidefinite over C.

1.4 Relative Interior

Consider I = [0, 1] ⊂ R. Then the interior of I is (0,1). However, if we consider
I as a subset in R2, then the interior of I is empty. This motivates the following
definition.

Definition:(Relative Interior) Let C ⊂ Rn. We say that x is a relative
interior point of C if x ∈ B(x; ε)∩ aff(C) ⊂ C, for some ε > 0. The set of all
relative interior point of C is called the relative interior of C, and is denoted
by ri(C). The relative boundary of C is equal to cl(C)\ ri(C).

Lemma: Let ∆m be an m-simplex in Rn with m ≥ 1. Then ri(∆m) 6= ∅.

Proof. Let x0, ..., xm be the vertices of ∆m. Let

x :=
1

m+ 1

m∑
i=0

xi

Note that V := span{x1−x0, ..., xm−x0} is the m-dimensional subspace parallel
to aff(∆m) = aff({x0, ..., xm}).
Hence for all x ∈ V , there exists unique λi such that

x =

m∑
i=1

λi(xi − x0)
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Let λ0 := −
∑m
i=1 λi, then (λ0, ..., λm) ∈ Rm+1 and

x =

m∑
i=0

λixi, with

m∑
i=0

λi = 0

Let L : V → Rm+1 be the mapping that sends x to (λ0, ..., λm). It is easy to
check that L is linear and thus continuous.
Hence there exists δ such that

||L(u)|| < 1

m+ 1
if ||u|| < δ

Let x ∈ (x+ B(0, δ)) ∩ aff(∆m) Then, x = x+ u, where ||u|| < δ.
Since x, x ∈ aff(∆m) and u = x− x, u ∈ V . Hence ||L(u)|| < 1

m+1 .

Suppose L(u) = (µ0, ..., µm), then u =
∑m
i=0 µixi and x =

∑m
i=0( 1

m+1 + µi)xi.

Since
∑m
i=0 µi = 0,

∑m
i=0( 1

m+1 + µi) = 1. Therefore, x ∈ ∆m.
Thus (x+ B(0; δ)) ∩ aff(∆m) ⊂ ∆m, so x ∈ ri(∆m).

Proposition: Let C be a nonempty convex set. Then ri(C) is nonempty.

Proof. Let m be the dimension of C.
If m = 0, then C must be a singleton. Hence ri(C) 6= ∅.
Suppose m ≥ 1. We first show that there exists m + 1 affinely independent
elements x0, ..., xm ∈ C.
Let {x0, ..., xk} be a maximal affinely independent set in C.
Consider K := aff({x0, ..., xk}). K ⊆ aff(C) since {x0, ..., xm} ⊂ C.
Suppose y ∈ C but y /∈ K. Then, {x0, ..., xk, y} is also affinely independent,
which is a contradiction. Therefore C ⊆ K and hence aff(C) ⊆ K. Then

k = dim(K) = dim(aff(C) = m

Therefore, there exists m+ 1 affinely independent elements x0, ..., xm ∈ C.
Let ∆m be the m-simplex formed by {x0, ..., xm}. By above, aff(∆m) = aff(C).
Since ri(∆m) is not empty, it follows that ri(C) is also nonempty.
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