
1.3 Convex Functions

In this course, we will consider extended-real-valued functions, which take val-
ues in R := (−∞,∞], with the convention that a+∞ =∞ ∀a ∈ R,∞+∞ =∞,
and t · ∞ =∞ ∀t > 0.

1.3.1 Convex Functions

Definition:(Convex Functions) Let C be a convex subset of Rn. A function
f : C → R is called convex on C if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)y,∀x, y ∈ C, ∀λ ∈ [0, 1].

A function is called stricly convex if the inequality above is strict for all x, y ∈ C
with x 6= y, and all λ ∈ (0, 1). A function is called concave if (−f) is convex.

Figure 1: Convex Function

Definition:(Level Sets) For a function f : C → R, we define the level sets of
f to be {x | f(x) ≤ λ}.

If a function is convex, then all its level sets are also convex (Exercise).
However, the convexity of all level sets of a function does not necessarily imply
the convexity of the function itself.

Examples of Convex Functions
The following functions are convex:

(a) f(x) := 〈a, x〉+ b for x ∈ Rn, where a ∈ Rn and b ∈ R.
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(b) g(x) := ||x|| for x ∈ Rn.

(c) h(x) := x2 for x ∈ R.

(d) F (x) := 1
2x

TAx for x ∈ Rn, where A is a n×n symmetric positive semidef-
inite matrix. (i.e. xTAx ≥ 0 for all x ∈ Rn)

Definition:(Epigraph and Effective Domain)
The epigraph of a function f : X → [−∞,∞], where X ⊂ Rn, is given by

epif = {(x,w)| x ∈ X, w ∈ R, f(x) 6 w}.

The effective domain of f is given by

domf = {x| f(x) <∞}.

Note that domf is just the projection of epif on Rn.

Definition:(Proper Function)
A function f is proper if f(x) < ∞ for at least one x ∈ X. f is improper if it
is not proper. By considering epif , it means that epif is not empty and does
not conatin any vertical line.

Theorem:(Jensen inequality)
A function f : Rn → R is convex if and only if for any λi ≥ 0 with

∑
λi = 1

and for any elements xi ∈ Rn, it holds that

f
(∑

λixi
)
≤
∑

λif(xi)

Proof. It suffices to prove that any convex function satisfies the Jensen inequal-
ity. We will prove this by induction.
The case m = 1, 2 are simple. So suppose the inequality holds for all k ≤ m.
Suppose λi ≥ 0 satisfies

∑m+1
i=1 λi = 1. Then

∑m
i=1 λi = 1− λm+1.

If λm+1 = 1, then λi = 0 for all i. Then the inequality holds.
So suppose λm+1 < 1. Then

m∑
i=1

λi
1− λm+1

= 1
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and

f
(m+1∑
i=1

λixi
)

= f

(
(1− λm+1)

m∑
i=1

λi
1− λm+1

xi + λm+1xm+1

)

≤ (1− λm+1)f

( m∑
i=1

λi
1− λm+1

xi

)
+ λm+1f(xm+1)

≤ (1− λm+1)

m∑
i=1

λi
1− λm+1

f(xi) + λm+1xm+1

=

m+1∑
i=1

λif(xi)

The following gives a geometric characterization of convexity.

Proposition: A function f : Rn → R is convex if and only if epif ⊂ Rn+1

is convex.

Proof. Assume f is convex. Let (x1, t1), (x2, t2) ∈ epif and λ ∈ [0, 1]. Then

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) ≤ λt1 + (1− λ)t2

Hence (λ(x1, t1) + (1− λ)(x2, t2) ∈ epif .
Conversely, suppose epif is convex. Let x1, x2 ∈ domf and λ ∈ [0, 1].
Since epif is convex, λ(x1, f(x1)) + (1− λ)(x2, f(x2)) ∈ epif . Then

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

Therefore, f is convex.

Definition:(Closed function) If the epigragh of a function f : X → R is
closed, we say that f is a closed function.

For example, the indicator funtion δX is convex if and only if X is convex,
is closed if and only if X is closed, where

δX(x) :=

{
0 x ∈ X
∞ otherwise

In fact, closedness is related to the concept of lower semicontinuity.
Recall that a function f is called lower semicontinuous at x ∈ X if

f(x) ≤ lim inf
k→∞

f(xk)
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for every sequence {xk} ⊂ X with x → xk. f is lower semicontinuous if it is
lower semicontinuous at each x ∈ X. f is upper semicontinuous if −f is lower
semicontinuous.

Proposition: Let f : Rn → R be a function, then the following are equiv-
alent:

(i) The level set Vγ = {x|f(x) ≤ γ} is closed for every γ.

(ii) f is lower semicontinuous.

(iii) epif is closed.

Proof. If f(x) = ∞ for all x, then the result holds. So assume f(x) < ∞ for
some x ∈ Rn. Therefore, epif is nonempty and there exists level sets of f that
are nonempty.
(i) =⇒ (ii). Assume Vγ is closed for every γ. Suppose f is not lower semicon-
tinuous, that is

f(x) > lim inf
k→∞

f(xk)

for some x and sequence {xk} converging to x. Let γ satisfies

f(x) > γ > lim inf
k→∞

f(xk).

Hence, there exists a subsequence {xki} such that f(xki) ≤ γ for all i. So,
{xki} ⊂ Vγ . But Vγ is closed, x also belongs to Vγ . Therefore, f(x) ≤ γ, con-
tradiction.
(ii) =⇒ (iii). Assume f is lower semicontinuous. Let (x,w) be the limit of
{(xk, wk)} ⊂ epi(f). We have f(xk) ≤ wk for all k. Since f is lower semicon-
tinuous, taking limit we have,

f(x) ≤ lim inf
k→∞

f(xk) ≤ w.

Hence (x,w) ∈ epif and so epif is closed.
(iii) =⇒ (i). Assume epif is closed. Let {xk} be a sequence in Vγ converging
to x for some γ. We have f(xk) ≤ γ, so (xk, γ) ∈ epif for each k. Since epif
is closed and (xk, γ) → (x, γ), we have (x, γ) ∈ epif , that is f(x) ≤ γ. Hence
x ∈ Vγ and Vγ is closed.

4


