1.3 Convex Functions

In this course, we will consider extended-real-valued functions, which take values in $\overline{\mathbb{R}} := (-\infty, \infty]$, with the convention that $a + \infty = \infty$ $\forall a \in \mathbb{R}, \infty + \infty = \infty$, and $t \cdot \infty = \infty \ \forall t > 0$.

1.3.1 Convex Functions

Definition: (Convex Functions) Let C be a convex subset of \mathbb{R}^n . A function $f: C \to \overline{\mathbb{R}}$ is called *convex* on C if

$$
f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)y, \forall x, y \in C, \forall \lambda \in [0, 1].
$$

A function is called *stricly convex* if the inequality above is strict for all $x, y \in C$ with $x \neq y$, and all $\lambda \in (0, 1)$. A function is called *concave* if $(-f)$ is convex.

Figure 1: Convex Function

Definition:(Level Sets) For a function $f: C \to \mathbb{R}$, we define the *level sets* of f to be $\{x \mid f(x) \leq \lambda\}.$

If a function is convex, then all its level sets are also convex (Exercise). However, the convexity of all level sets of a function does not necessarily imply the convexity of the function itself.

Examples of Convex Functions

The following functions are convex:

(a)
$$
f(x) := \langle a, x \rangle + b
$$
 for $x \in \mathbb{R}^n$, where $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$.

- (b) $g(x) := ||x||$ for $x \in \mathbb{R}^n$.
- (c) $h(x) := x^2$ for $x \in \mathbb{R}$.
- (d) $F(x) := \frac{1}{2}x^{T}Ax$ for $x \in \mathbb{R}^{n}$, where A is a $n \times n$ symmetric positive semidefinite matrix. (i.e. $x^T A x \geq 0$ for all $x \in \mathbb{R}^n$)

Definition:(Epigraph and Effective Domain)

The *epigraph* of a function $f: X \to [-\infty, \infty]$, where $X \subset \mathbb{R}^n$, is given by

$$
epif = \{(x, w) | x \in X, w \in \mathbb{R}, f(x) \leq w\}.
$$

The *effective domain* of f is given by

$$
\text{dom} f = \{x \mid f(x) < \infty\}.
$$

Note that dom f is just the projection of epif on \mathbb{R}^n .

Definition:(Proper Function)

A function f is proper if $f(x) < \infty$ for at least one $x \in X$. f is *improper* if it is not proper. By considering $epif$, it means that $epif$ is not empty and does not conatin any vertical line.

Theorem:(Jensen inequality)

A function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is convex if and only if for any $\lambda_i \geq 0$ with $\sum \lambda_i = 1$ and for any elements $x_i \in \mathbb{R}^n$, it holds that

$$
f\left(\sum \lambda_i x_i\right) \leq \sum \lambda_i f(x_i)
$$

Proof. It suffices to prove that any convex function satisfies the Jensen inequality. We will prove this by induction.

The case $m = 1, 2$ are simple. So suppose the inequality holds for all $k \leq m$. Suppose $\lambda_i \geq 0$ satisfies $\sum_{i=1}^{m+1} \lambda_i = 1$. Then $\sum_{i=1}^{m} \lambda_i = 1 - \lambda_{m+1}$. If $\lambda_{m+1} = 1$, then $\lambda_i = 0$ for all i. Then the inequality holds. So suppose $\lambda_{m+1} < 1$. Then

$$
\sum_{i=1}^m \frac{\lambda_i}{1-\lambda_{m+1}}=1
$$

and

$$
f\left(\sum_{i=1}^{m+1} \lambda_i x_i\right) = f\left((1 - \lambda_{m+1}) \sum_{i=1}^m \frac{\lambda_i}{1 - \lambda_{m+1}} x_i + \lambda_{m+1} x_{m+1}\right)
$$

\n
$$
\leq (1 - \lambda_{m+1}) f\left(\sum_{i=1}^m \frac{\lambda_i}{1 - \lambda_{m+1}} x_i\right) + \lambda_{m+1} f(x_{m+1})
$$

\n
$$
\leq (1 - \lambda_{m+1}) \sum_{i=1}^m \frac{\lambda_i}{1 - \lambda_{m+1}} f(x_i) + \lambda_{m+1} x_{m+1}
$$

\n
$$
= \sum_{i=1}^{m+1} \lambda_i f(x_i)
$$

The following gives a geometric characterization of convexity.

Proposition: A function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is convex if and only if epi $f \subset \mathbb{R}^{n+1}$ is convex.

 \Box

 \Box

Proof. Assume f is convex. Let $(x_1, t_1), (x_2, t_2) \in$ epif and $\lambda \in [0, 1]$. Then

$$
f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2) \le \lambda t_1 + (1 - \lambda)t_2
$$

Hence $(\lambda(x_1, t_1) + (1 - \lambda)(x_2, t_2) \in$ epif. Conversely, suppose epif is convex. Let $x_1, x_2 \in \text{dom} f$ and $\lambda \in [0, 1]$. Since epif is convex, $\lambda(x_1, f(x_1)) + (1 - \lambda)(x_2, f(x_2)) \in$ epif. Then

$$
f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2)
$$

Therefore, f is convex.

Definition:(Closed function) If the epigragh of a function $f: X \to \overline{\mathbb{R}}$ is closed, we say that f is a *closed* function.

For example, the indicator funtion δ_X is convex if and only if X is convex, is closed if and only if X is closed, where

$$
\delta_X(x) := \begin{cases} 0 & x \in X \\ \infty & \text{otherwise} \end{cases}
$$

In fact, closedness is related to the concept of lower semicontinuity. Recall that a function f is called *lower semicontinuous* at $x \in X$ if

$$
f(x) \le \liminf_{k \to \infty} f(x_k)
$$

for every sequence $\{x_k\} \subset X$ with $x \to x_k$. f is lower semicontinuous if it is lower semicontinuous at each $x \in X$. f is upper semicontinuous if $-f$ is lower semicontinuous.

Proposition: Let $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ be a function, then the following are equivalent:

- (i) The level set $V_{\gamma} = \{x | f(x) \leq \gamma\}$ is closed for every γ .
- (ii) f is lower semicontinuous.
- (iii) epif is closed.

Proof. If $f(x) = \infty$ for all x, then the result holds. So assume $f(x) < \infty$ for some $x \in \mathbb{R}^n$. Therefore, epif is nonempty and there exists level sets of f that are nonempty.

(i) \implies (ii). Assume V_{γ} is closed for every γ . Suppose f is not lower semicontinuous, that is

$$
f(x) > \liminf_{k \to \infty} f(x_k)
$$

for some x and sequence $\{x_k\}$ converging to x. Let γ satisfies

$$
f(x) > \gamma > \liminf_{k \to \infty} f(x_k).
$$

Hence, there exists a subsequence $\{x_{k_i}\}\$ such that $f(x_{k_i}) \leq \gamma$ for all i. So, $\{x_{k_i}\} \subset V_\gamma$. But V_γ is closed, x also belongs to V_γ . Therefore, $f(x) \leq \gamma$, contradiction.

(ii) \implies (iii). Assume f is lower semicontinuous. Let (x, w) be the limit of $\{(x_k, w_k)\}\subset \text{epi}(f)$. We have $f(x_k) \leq w_k$ for all k. Since f is lower semicontinuous, taking limit we have,

$$
f(x) \le \liminf_{k \to \infty} f(x_k) \le w.
$$

Hence $(x, w) \in$ epif and so epif is closed.

(iii) \implies (i). Assume epif is closed. Let $\{x_k\}$ be a sequence in V_γ converging to x for some γ . We have $f(x_k) \leq \gamma$, so $(x_k, \gamma) \in \text{epi}f$ for each k. Since $\text{epi}f$ is closed and $(x_k, \gamma) \to (x, \gamma)$, we have $(x, \gamma) \in epi f$, that is $f(x) \leq \gamma$. Hence $x \in V_{\gamma}$ and V_{γ} is closed. \Box