1.2 Convex and Affine Hulls

1.2.1 Convex Hull

Definition:(Convex Hull)

Let X be a subset of \mathbb{R}^n . The convex hull of X is defined by

 $\operatorname{conv}(X) := \bigcap \{ C | \ C \text{ is convex and } X \subseteq C \}$

In other words, conv(X) is the smallest convex set containing X. The next proposition provides a good representation for elements in the convex hull.

Proposition: For any subset X of \mathbb{R}^n ,

$$\operatorname{conv}(X) = \left\{ \sum_{i=1}^{m} \lambda_i x_i | \sum_{i=1}^{m} \lambda_i = 1, \ \lambda_i \ge 0, \ x_i \in X \right\}$$

Proof. Let $C = \left\{ \sum_{i=1}^{m} \lambda_i x_i | \sum_{i=1}^{m} \lambda_i = 1, \lambda_i \ge 0, x_i \in X \right\}$. Clearly, $X \subseteq C$. Next, we check that C is convex.

Let $a = \sum_{i=1}^{p} \alpha_i a_i, b = \sum_{j=1}^{q} \beta_j b_j$ be elements of C, where $a_i, b_i \in C$ with $\alpha_i, \beta_j \ge 0$ and $\sum \alpha_i = \sum \beta_j = 1$. Suppose $\lambda \in [0, 1]$, then

$$\lambda a + (1 - \lambda)b = \sum_{i=1}^{p} \lambda \alpha_i a_i + \sum_{j=1}^{q} (1 - \lambda)\beta_j b_j.$$

Since

$$\sum_{i=1}^{p} \lambda \alpha_i + \sum_{j=1}^{q} (1-\lambda)\beta_j = \lambda \sum_{i=1}^{p} \alpha_i + (1-\lambda) \sum_{j=1}^{q} \beta_j = 1$$

we have $\lambda a + (1 - \lambda)b \in C$. Hence, C is convex. Also, $\operatorname{conv}(X) \subseteq C$ by the definition of $\operatorname{conv}(X)$.

Suppose $a = \sum \lambda_i a_i \in C$. Then since each $a_i \in X \subseteq \text{conv}(X)$ and conv(X) is convex, we have $a \in \text{conv}(X)$. Therefore, conv(X) = C.

Let $a, b \in \mathbb{R}^n$, define the interval

$$[a,b) := \{ \lambda a + (1-\lambda)b | \ \lambda \in (0,1] \}$$

The intervals (a, b], (a, b) are defined similarly.

Lemma: For a convex set $C \in \mathbb{R}^n$ with nonempty interior, take $a \in C^{\circ}$ and $b \in \overline{C}$. Then $[a, b) \subset C^{\circ}$.

Proof. Since $b \in \overline{C}$, for any $\epsilon > 0$, we have $b \in C + \epsilon \mathbf{B}$, where **B** denotes the closed unit ball centered at 0.

Take $\lambda \in (0,1]$ and let $x_{\lambda} := \lambda a + (1-\lambda)b$. Let ϵ be such that $a + \epsilon \frac{2-\lambda}{\lambda} \mathbf{B} \subset C$.

$$x_{\lambda} + \epsilon \mathbf{B} = \lambda a + (1 - \lambda)b + \epsilon \mathbf{B}$$

$$\subset \lambda a + (1 - \lambda)[C + \epsilon \mathbf{B}] + \epsilon \mathbf{B}$$

$$= \lambda a + (1 - \lambda)C + (2 - \lambda)\epsilon \mathbf{B}$$

$$\subset \lambda [a + \epsilon \frac{2 - \lambda}{\lambda} \mathbf{B}] + (1 - \lambda)C$$

$$\subset \lambda C + (1 - \lambda)C \subset C$$

Hence $x_{\lambda} \in C^{\circ}$ and $[a, b) \subset C^{\circ}$.

1.2.2 Affine Sets and Affine Hull

Given $a, b \in \mathbb{R}^n$, the line connecting them is defined as

$$\mathcal{L}[a,b] := \{ \lambda a + (1-\lambda)b | \ \lambda \in \mathbb{R} \}$$

Note that there is no restriction on λ .

Definition:(Affine Set) A subset S of \mathbb{R}^n is affine if for any $a, b \in S$, we have $\mathcal{L}[a, b] \subseteq S$.

Definition:(Affine Combination)

Given $x_1, ..., x_m \in \mathbb{R}^n$, an element in the form $x = \sum_{i=1}^m \lambda_i x_i$, where $\sum_{i=1}^m \lambda_i = 1$ is called an affine combination of $x_1, ..., x_m$.

Proposition: A set S is affine if and only if it contains all affine combination of its elements.

Definition:(Affine Hull) The *affine hull* of a set $X \subseteq \mathbb{R}^n$ is

$$\operatorname{aff}(X) := \bigcap \{ S | S \text{ is affine and } X \subseteq S \}$$

Proposition: For any subset X of \mathbb{R}^n ,

$$\operatorname{aff}(X) = \left\{ \sum_{i=1}^{m} \lambda_i x_i | \sum_{i=1}^{m} \lambda_i = 1, \ x_i \in X \right\}$$

In fact, an affine set $S \subset \mathbb{R}^n$ is of the form x + V, where $x \in S$ and V is a vector space called the subspace parallel to S.

Lemma: Let S be nonempty. Then the following are equivalent:

1. S is affine

2. S is of the form x + V for some subspace $V \subset \mathbb{R}^n$ and $x \in S$.

Also, V is unique and equals to S - S.

Proof. Suppose S is affine. We first assume $0 \in S$. Let $x \in S$ and $\gamma \in \mathbb{R}$. Since $0 \in S$, we have $\gamma x + (1 - \gamma)0 = \gamma x \in S$. Now, suppose $x, y \in S$. Then $x + y = 2(\frac{1}{2}x + \frac{1}{2}y) \in S$. Hence, S is closed under addition and scalar multiplication. Therefore, S = 0 + S is a linear subspace. If $0 \notin S$, then $0 \in S - x$ for any $x \in S$. So S - x is a linear subspace. Therefore, S = x + V.

The other direction is simple, just use the fact that V is a linear subspace. Now suppose $S = x_1 + V_1 = x_2 + V_2$, where $x_1, x_2 \in S$, V_1, V_2 are linear subspaces. Then $x_1 - x_2 + V_1 = V_2$. Since V_2 is a subspace, $x_1 - x_2 \in V_1$. So $V_2 = x_1 - x_2 + V_1 \subseteq V_1$. Similarly, $V_1 \subseteq V_2$. Therefore V is unique.

Since S = x + V, so $V = S - x \subseteq S - S$. Let $u, v \in S$ and z = u - v. Then S - v = V by the uniqueness of V. So $z \in S - v = V$ and hence $S - S \subseteq V$. \Box

Definition:(Dimension of affine and convex sets) The dimension of aff(X) is defined to be the dimension of the subspace parallel to X. The dimension of a convex set C is defined to be the dimension of aff(C).

Definition:(Affinely Independent) $x_0, ..., x_m \in \mathbb{R}^n$ are affinely independent if

$$\left[\sum \lambda_i x_i = 0, \sum \lambda_i = 0\right] \Longrightarrow [\lambda_i = 0 \text{ for all } i]$$

Proposition: $x_0, ..., x_m \in \mathbb{R}^n$ are affinely independent if and only if $x_1 - x_0, ..., x_m - x_0$ are linearly independent.

Proof. Suppose $x_0, ..., x_m$ are affinely independent. Suppose

$$\sum_{i=1}^{m} \lambda_i (x_i - x_0) = 0$$

Let $\lambda_0 := -\sum_{i=1}^m \lambda_i$, then we have

$$\lambda_0 x_0 + \sum_{i=1}^m \lambda_i x_i = 0$$

Since $\sum_{i=0}^{m} \lambda_i = 0$, $\lambda_i = 0$ for all *i*. Hence, $x_1 - x_0, ..., x_m - x_0$ are linearly independent.

The converse follows directly from the definition

Lemma: Let $S := aff(\{x_0, ..., x_m\})$, where $x_i \in \mathbb{R}^n$. Then $span\{x_1 - x_0, ..., x_m - x_0\}$ is the subspace parallel to S.

Proof. Let V be the subspace parallel to S. Then $S - x_0 = V$. Hence span{ $x_1 - x_0, ..., x_m - x_0$ } $\subseteq V$. Let $x \in V$, then $x + x_0 \in S$. So

$$x + x_0 = \sum_{i=0}^{m} \lambda_i x_i$$
, where $\sum \lambda_i = 1$

Therefore

$$x = \sum_{i=1}^{m} \lambda_i (x_i - x_0) \in \operatorname{span}\{x_1 - x_0, x_m - x_0\}$$

Proposition: $x_0, ..., x_m$ are affinely independent in \mathbb{R}^n if and only if its affine hull is m-dimensional.

Proof. Suppose $x_0, ..., x_m$ are affinely independent. Then $x_1 - x_0, ..., x_m - x_0$ are linearly independent. Therefore, $V = \operatorname{span}\{x_1 - x_0, ..., x_m - x_0\}$ is mdimensional. Since V is the subspace parallel to $aff(\{x_0, ..., x_m\}), aff(\{x_0, ..., x_m\})$ is m-dimensional.

The converse is proven similarly.

Definition:(m-Simplex)Let $x_0, ..., x_m$ be affinely independent in \mathbb{R}^n . Then the set

$$\Delta_m := \operatorname{conv}(\{x_0, \dots, x_m\})$$

is called a m-simplex in \mathbb{R}^n with vertices x_i .

Proposition: Consider a m-simplex Δ_m with vertices $x_0, ..., x_m$. For every $x \in \Delta_m$, there is a unique element $(\lambda_0, ..., \lambda_m) \in \mathbb{R}^{m+1}_+$ such that

$$x = \sum \lambda_i x_i, \ \sum \lambda_i = 1.$$

Proof. The existence follows directly from the definition. We only need to show the uniqueness.

Suppose $(\lambda_0, ..., \lambda_m), (\mu_0, ..., \mu_m) \in \mathbb{R}^{m+1}_+$ satisfy

$$x = \sum \lambda_i x_i = \sum \mu_i x_i, \ \sum \lambda_i = \sum \mu_i = 1$$

Then

$$\sum (\lambda_i - \mu_i) x_i = 0, \ \sum (\lambda_i - \mu_i) = 0$$

Since $x_0, ..., x_m$ are affinely independent, $\lambda_i - \mu_i = 0$ for all *i*.

Definition: The cone generated by a set X is the set of all nonnegative combination of elements in X. A nonnegative (positive) combination of $x_1, x_2, ..., x_m$ is of the form m

$$\sum_{i=1}^{m} \lambda_i x_i, \text{ where } \lambda_i \ge 0 \ (\lambda_i > 0).$$

Next, we prove a important theorem concerning convex hulls.

Theorem:(Caratheodory's Theorem) Let X be a nonempty subset of \mathbb{R}^n .

- (a) Every nonzero vector of cone(X) can be represented as a positive combination of linearly independent vectors from X.
- (b) Every vector from conv(X) can be represented as a convex combination of at most n + 1 vectors from X.

Proof. (a) Let $x \in \text{cone}(X)$ and $x \neq 0$. Suppose m is the smallest integer such that x is of the form $\sum_{i=1}^{m} \lambda_i x_i$, where $\lambda_i > 0$ and $x_i \in X$. Suppose that x_i are not linearly independent. Therefore, there exist μ_i with at least one μ_i positive, such that $\sum_{i=1}^{m} \mu_i x_i = 0$. Consider $\overline{\gamma}$, the largest γ such that $\lambda_i - \gamma \mu_i \geq 0$ for all i. Then $\sum_{i=1}^{m} (\lambda_i - \overline{\gamma}\mu)x_i$ is a representation of x as a positive combination of less than m vectors, contradiction. Hence, x_i are linearly independent.

(b) Consider $Y = \{(x,1) : x \in X\}$. Let $x \in \operatorname{conv}(X)$. Then $x = \sum_{i=1}^{m} \lambda_i x_i$, where $\sum_{i=1}^{m} \lambda_i = 1$, so $(x,1) \in \operatorname{cone}(Y)$.

By (a), $(x, 1) = \sum_{i=1}^{l} \lambda'_i(x_i, 1)$, where $\lambda_i > 0$. Also, $(x_1, 1), \dots, (x_l, 1)$ are linearly independent vectors in \mathbb{R}^{n+1} (at most n+1). Hence, $x = \sum_{i=1}^{l} \lambda'_i x_i, \sum_{i=1}^{m} \lambda'_i = 1$

Proposition: Let $X \subseteq \mathbb{R}^n$ be a compact set. Then conv(X) is compact.

Proof. Let $\{x^k\}$ be a sequence in conv(X). By Caratheodory's Theorem,

$$x^k = \sum_{i=1}^{n+1} \lambda_i^k x_i^k$$

where $\lambda_i^k \geq 0$, $x_i^k \in X$ and $\sum_{i=1}^{n+1} \lambda_i^k = 1$. Note that the sequence $\{(\lambda_1^k, ..., \lambda_{n+1}^k, x_1^k, ..., x_{n+1}^k)\}$ is bounded. Then it has a limit point $(\lambda_1, ..., \lambda_{n+1}, x_1, ..., x_{n+1})$, where $\sum_{i=1}^{n+1} \lambda_i = 1$ and $x_i \in X$. Hence $\sum_{i=1}^{n+1} \lambda_i x_i \in \text{conv}(X)$ is a limit point of the sequence x^k . Therefore, conv(X) is compact.