
Lagrange duality

Another way to arrive at the KKT conditions, and one which gives
us some insight on solving constrained optimization problems, is
through the Lagrange dual. The dual is a maximization program in
λ,ν — it is always concave (even when the original program is not
convex), and gives us a systematic way to lower bound the optimal
value.

The Lagrangian

We consider an optimization program of the form

minimize
x∈RN

f0(x) fm(x) ≤ 0, m = 1, . . . ,M (1)

hp(x) = 0, p = 1, . . . , P.

Much of what we will say below applies equally well to nonconvex
programs as well as convex programs, so we will make it clear when
we are taking the fm to be convex and the hp to be affine. We
will take the domain of all of the fm and hp to be all of RN below;
this just simplifies the exposition, we can easily replace this with the
intersections of the dom fm and domhp. We will assume that the
intersection of the feasible set,

C = {x : fm(x) ≤ 0, hp(x) = 0, m = 1, . . . ,M, p = 1, . . . , P}

is a non-empty and a subset RN .
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The Lagrangian takes the constraints in the program above and
integrates them into the objective function. The Lagrangian L :
RN × RM × RP → R associated with this optimization program
is

L(x,λ,ν) = f0(x) +
M∑

m=1

λmfm(x) +
P∑
p=1

νphp(x)

The x above are referred to as primal variables, and the λ,ν as
either dual variables or Lagrange multipliers.

The Lagrange dual function g(λ,ν) : RM × RP → R is the
minimum of the Lagrangian over all values of x:

g(λ,ν) = inf
x∈RN

(
f0(x) +

M∑
m=1

λmfm(x) +
P∑
p=1

νphp(x)

)
.

Since the dual is a pointwise infimum of a family of affine functions
in λ,ν, g is concave regardless of whether or not the fm, hp are
convex.

The key fact about the dual function is that is it is everywhere a
lower bound on the optimal value of the original program. If p? is
the optimal value for (1), then

g(λ,ν) ≤ p?, for all λ ≥ 0, ν ∈ RP .
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This is (almost too) easy to see. For any feasible point x0,

M∑
m=1

λmfm(x0) +
P∑

p=1

νphp(x0) ≤ 0,

and so

L(x0,λ,ν) ≤ f0(x0), for all λ ≥ 0, ν ∈ RP ,

meaning

g(λ,ν) = inf
x∈RN

L(x,λ,ν) ≤ L(x0,λ,ν) ≤ f0(x0).

Since this holds for all feasible x0, g(λ,ν) ≤ infx∈C f0(x) = p?.

The (Lagrange) dual to the optimization program (1) is

maximize
λ∈RM ,ν∈RP

g(λ,ν) subject to λ ≥ 0. (2)

The dual optimal value d? is

d? = sup
λ≥0,ν

g(λ,ν) = sup
λ≥0,ν

inf
x∈RN

L(x,λ,ν).

Since g(λ,ν) ≤ p?, we know that

d? ≤ p?.

The quantity p?− d? is called the duality gap. If p? = d?, then we
say that (1) and (2) exhibit strong duality.
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Certificates of (sub)optimality

Any dual feasible1 (λ,ν) gives us a lower bound on p?, since g(λ,ν) ≤
p?. If we have a primal feasible x, then we know that

f0(x)− p? ≤ f0(x)− g(λ,ν).

We will refer to f0(x)−g(λ,ν) as the duality gap for primal/dual
(feasible) pair x,λ,ν. We know that

p? ∈ [g(λ,ν), f0(x)], and likewise d? ∈ [g(λ,ν), f0(x)].

If we are ever able to reduce this gap to zero, then we know that x
is primal optimal, and λ,ν are dual optimal.

There are certain kinds of “primal-dual” algorithms that produce a
series of (feasible) points x(k),λ(k),ν(k) at every iteration. We can
then use

f0(x
(k))− g(λ(k),ν(k)) ≤ ε,

as a stopping criteria, and know that our answer would yield an
objective value no further than ε from optimal.

Strong duality and the KKT conditions

Suppose that for a convex program, the primal optimal value p? an
the dual optimal value d? are equal

p? = d?.

1We simply need λ ≥ 0 for (λ,ν) to be dual feasible.
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If x? is a primal optimal point and λ?,ν? is a dual optimal point,
then we must have

f0(x
?) = g(λ?,ν?)

= inf
x∈RN

(
f0(x) +

M∑
m=1

λ?
mfm(x) +

P∑
p=1

ν?php(x)

)

≤ f0(x
?) +

M∑
m=1

λ?
mfm(x?) +

P∑
p=1

ν?php(x
?)

≤ f0(x
?).

The last inequality follows from the fact that λ?
m ≥ 0 (dual feasi-

bility), fm(x?) ≤ 0, and hp(x
?) = 0 (primal feasibility). Since we

started out and ended up with the same thing, all of the things above
must be equal, and so

λ?
mfm(x?) = 0, m = 1, . . . ,M.

Also, since we know x? is a minimizer ofL(x,λ?,ν?) (second equality
above), which is an unconstrained convex function (with λ,ν fixed),
the gradient with respect to x must be zero:

∇xL(x?,λ?,ν?) = ∇f0(x?)+
M∑

m=1

λ?
m∇fm(x?)+

P∑
p=1

ν?p∇hp(x
?) = 0.

Thus strong duality immediately leads to the KKT conditions hold-
ing at the solution.

Also, if you can find x?,λ?,ν? that obey the KKT conditions, not
only do you know that you have a primal optimal point on your
hands, but also we have strong duality (and λ?,ν? are dual optimal).
For if KKT holds,

∇xL(x?,λ?,ν?) = 0,
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meaning that x? is a minimizer of L(x,λ?,ν?), i.e.

L(x?,λ?,ν?) ≤ L(x,λ?,ν?),

thus

g(λ?,ν?) = L(x?,λ?,ν?)

= f0(x
?) +

M∑
m=1

λ?
mfm(x?) +

P∑
p=1

ν?php(x
?)

= f0(x
?), (by KKT),

and we have strong duality.

The upshot of this is that the conditions for strong duality are essen-
tially the same as those under which KKT is necessary.

The program (1) and its dual (2) have strong duality if the fm are
affine inequality constraints, or there is an x ∈ RN such that for
all the fi which are not affine we have fi(x) < 0.
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Examples

1. Inequality LP. Calculate the dual of

minimize
x∈RN

〈x, c〉 subject to Ax ≤ b.

Answer: The Lagrangian is

L(x,λ) = 〈x, c〉 +
M∑

m=1

λm (〈x,am〉 − bm)

= cTx− λTb + λTAx.

This is a linear functional in x — it is unbounded below unless

c +ATλ = 0.

Thus

g(λ) = inf
x

(
cTx− λTb + λTAx

)
=

{
−〈λ, b〉, c +ATλ = 0

−∞, otherwise.

So the Lagrange dual program is

maximize
λ∈RM

−〈λ, b〉 subject to ATλ = −c

λ ≥ 0.
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2. Standard form LP. Calculate the dual of

minimize
x∈RN

〈x, c〉 subject to Ax = b

λ ≥ 0.
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Least-squares. Calculate the dual of

minimize
x∈RN

‖x‖22 subject to Ax = b.

Check that the duality gap is zero.

Answer:

maximize
ν∈RM

−1

4
νTAATν − bTν
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3. Minimum norm. Calculate the dual of

minimize
x∈RN

‖x‖ subject to Ax = b,

where ‖ · ‖ is a general valid norm.

Answer: Use f0(x) = ‖x‖ to ease notation below. We start
with the Lagrangian:

L(x,ν) = f0(x) +
P∑
p=1

νp(〈x,am〉 − bm)

= f0(x)− 〈ν, b〉 + (ATν)Tx

and so

g(ν) = −〈ν, b〉 + inf
x

(
f0(x) + (ATν)Tx

)
= −〈ν, b〉 − sup

x

(
−f0(x)− (ATν)Tx

)
= −〈ν, b〉 − f ∗0 (−ATν),

where f ∗0 is the Fenchel dual of f0:

f ?
0 (y) = sup

x
(〈x,y〉 − f0(x)).

With f0 = ‖ · ‖, we know already that

f ?
0 (y) =

{
0, ‖y‖∗ ≤ 1,

∞, otherwise
,

so

g(ν) =

{
−〈ν, b〉, ‖ATν‖∗ ≤ 1

−∞, otherwise
.
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Thus the dual program is

maximize
ν∈RP

− 〈ν, b〉 subject to ‖ATν‖∗ ≤ 1,

where ‖ · ‖∗ is the dual norm of ‖ · ‖.
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Max flow, Min cut

Consider the following network.

1

2

3

4 6

5

6

6
5 2

3

7
2

2

2

The nodes are routers, the edges are communications links; associ-
ated with each node is a capacity — node 1 can communicate to
node 2 at as much as 6 Mbps, node 2 can communicate to node 4 at
upto 2 Mbps, etc.

Question: Can node 1 (the source) communicate to node 6 (the
sink) at 6 Mbps? 12 Mbps? What is the maximum rate?

Formally, we can model this type of problem as follows. The connec-
tions between the N nodes in the network are entries in an N ×N
matrix; entry (i, j) of the capacity matrix C records the capacity of
link from node i to node j. If there is not a link from i to j, we set
C(i, j) = 0. Here is the capacity matrix for the example network
above:

C =


0 6 0 0 6 0
0 0 2 2 0 0
0 0 0 2 0 7
0 0 0 0 0 3
0 0 0 5 0 2
0 0 0 0 0 0
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We will solve for the N ×N flow matrix X :

X [i, j] = flow from node i to node j.

Valid flows are positive and less than their respective capacities:

X ≥ 0, X ≤ C.
(The inequality above are to be understood entrywise, as the partial
ordering for the non-negative orthant RN×N

+ .) To keep things simple,
we will assume that there are no edges coming into the source or out
of the sink. The conservation of flow means that the sum of all the
outgoing flows at every non-source/sink node must be the same as
the sum of all the incoming flows. The sum of all the outgoing flows
from node i is simply the sum of all entries in row i of X ; the sum of
all the incoming flows is the sum along column i. We will assume the
source is node i = 1 and the sink is node i = N , so the conservation
law becomes the N − 2 linear equality constraints

N∑
j=2

X(i, j) =
N−1∑
k=1

X(k, i), i = 2, . . . , N − 1.

The flow of the network, then, is simply the sum of everything coming
out of the source:

flow =
N∑
i=2

X(1, i)

So, solving for the maximum flow is a linear program:

maximize
X∈RN×N

〈X,S〉 subject to −X ≤ 0

X ≤ C
〈X,Ln〉 = 0, n = 2, . . . , N − 1
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where

S =


0 1 · · · 1
0 0 · · · 0
... ...
0 0 · · · 0

 , L2 =


0 1 0 · · · 0
0 0 −1 · · · −1
0 1 0 · · · 0
... ... ... ...
0 1 0 · · · 0
0 0 0 · · · 0

 ,

and similarly Ln consists of a single column (n) of ones (except for
the last row) minus a single row (also n) of ones (except for the first
column).

A general LP with both linear inequality and equality constraints

minimize
x

〈x, c〉, subject to Ax ≤ b
Wx = y,

has dual

maximize
λ,ν

− 〈λ, b〉 − 〈ν,y〉 subject to ATλ +W Tν + c = 0

λ ≥ 0.

A quick calculation shows that the dual of maxflow is then

minimize
Λ1,Λ2,ν

〈Λ1,C〉 subject to Λ1 −Λ2 +Q− S = 0

Λ1 ≥ 0

Λ2 ≥ 0
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where

Q =


0 ν2 ν3 · · · νN−1 0
0 0 ν3 − ν2 · · · νN−1 − ν2 −ν2
0 ν2 − ν3 0 · · · νN−1 − ν3 −ν3
... · · · ...
0 ν2 − νN−1 ν3 − νN−1 · · · 0 −νN−1
0 0 0 · · · 0 0

 .

We see that the Λ2 are just slack variables, and we can re-write the
program as

minimize
Λ,ν

〈Λ,C〉 subject to Λ +Q ≥ S
Λ ≥ 0,

or equivalently

minimize
Λ,ν

∑
i,j

λi,jCi,j subject to λi,j − νj + νi ≥ 0, 2 ≤ i, j ≤ N − 1
λ1,j + νj ≥ 1, j = 2, . . . , N − 1

λi,N − νi ≥ 0, i = 2, . . . , N − 1

λ1,N ≥ 1

λi,j ≥ 0, 1 ≤ i, j ≤ N.
(1)

We will argue below that this dual program is equivalent to finding
the minimum cut in the network. A cut of the network separates
the vertices into two sets: one containing the source (we call this set
S , and one containing the sink. The capacity of the cut is the total
value of the edges coming out of S — we are separating the sets by
“cutting off the flow” along these edges.
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For example, here we have S = {1, 4, 5}:

1

2

3

4 6

5

6

6
5 2

3

7
2

2

2

S

The edges in the cut are 1 → 2, 4 → 6, and 5 → 6; the capacity of
this cut is 6 + 3 + 2 = 11.

In this example, we have S = {1, 2, 4, 5}:

1

2

3

4 6

5

6

6
5 2

3

7
2

2

2

S

The edges in this cut are 2→ 3, 4→ 6, and 5→ 6. The capacity of
this cut is 2 + 3 + 2 = 7.

In general, a cut is specified by a subset of vertices containing the
source but not the sink: S ⊂ {1, . . . , N}, 1 ∈ S, N 6∈ S. The
associated capacity is

capacity(S) =
∑

i∈S, j 6∈S
Ci,j
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What is the minimum value of the smallest cut? We will argue that it
is same as the optimal value of the solution d? of the dual program in
(1). First, suppose that S is a valid cut. From S , we can easily find
a dual feasible point that matches its capacity: for n = 1, . . . , N ,
take

νn =

{
1, n ∈ S,
0, n 6∈ S, and λi,j =


max(νi − νj, 0), i 6= 1, j 6= N,

1− νj, i = 1,

νi, j = N

.

Notice that these choices obey the constraints in the dual, and that
λi,j will be 1 if i→ j is cut, and 0 otherwise, so

capactity(S) =
∑
i,j

λi,jCi,j.

Every cut is feasible, so

d? ≤ MINCUT.

Now we show that for every solution ν?,λ? of the dual, there is a cut
that has a capacity at most d?. The argument for this is nifty: we
generate a cut at random, and then show that the expected value of
the capacity of the cut is less than d? — this means there must be
at least one with a capacity of d? or less.

LetZ be a uniform random variable on [0, 1]. Along withλ?, ν?2 , . . . , ν
?
N−1

generated by solving (1), take ν1 = 1 and νN = 0. Create a cut S
with the rule:

if ν?n > Z, then take n ∈ S.

6
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The probability that a particular edge i→ j is in this cut is

P (i ∈ S, j 6∈ S) = P
(
ν?j ≤ Z ≤ ν?i

)

≤


max(ν?i − ν?j , 0), 2 ≤ i, j ≤ N − 1,

1− ν?j , i = 1; j = 2, . . . , N − 1,

ν?i , i = 2, . . . , N − 1; j = N

1, i = 1; j = N.

≤ λ?
i,j,

where the last inequality follows simply from the constraints in the
dual program (1). This cut is random, so its capacity is a random
variables, and its expectation is

E[capacity(S)] =
∑
i,j

Ci,j P (i ∈ S, j 6∈ S)

≤
∑
i,j

Ci,jλ
?
i,j

= d?.

Thus there must be a cut whose capacity is at most d?. This estab-
lishes that

MINCUT ≤ d?.

Combining these two facts of course means that

d? = MINCUT = MAXFLOW = p?,

where p? is the solution of the primal, and equality follows from
strong duality for linear programming.
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The minimum cut problem is interesting by itself. Among other
things, it can be used to perform image segmentation:

(From F. Estrada et al. (2004), “Spectral embedding and min cut
for image segmentation”)

13You set this problem up by connecting each pixel to a foreground
“source” (with some capacity that would represent the foreground
value) and to a background “sink” (with some capacity that would
represent the background value), and penalizing if adjacent pixels get
assigned to different modes. (See the reference above for all of the
details.)
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Support vector machines

Consider the following fundamental binary classification problem.
We are given points x1, . . . ,xM ∈ RN with labels y1, . . . , yM , where
ym ∈ {−1,+1}. We would like to find a hyperplane (i.e. affine
functional) which separates the points1:

H1 and H2 above separate the points in R2, but H3 does not. To
choose among the hyperplanes which separate the points, we will
take the one with maximum margin (maximize the distance to the
closest point in either class).

To restate this, we want to find a w ∈ RN and b ∈ R such that

〈xm,w〉 − b ≥ 1, when ym = 1,

〈xm,w〉 − b ≤ −1, when ym = −1.

1From Wikipedia: “Svm separating hyperplanes (SVG)” by
User:ZackWeinberg, based on PNG version by User:Cyc.
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Of course, it is possible that no separating hyperplane exists; in this
case, there will be no feasible points in the program above. It is
straightforward, though, to modify this discussion to allow “misla-
beled” points.

In the formulation above, the distance between the two (parallel)
hyperplanes2 is 2/‖w‖2:

Thus maximizing this distance is the same as minimizing ‖w‖2.

We have the program

minimize
w∈RN , b∈R

1

2
‖w‖22 subject to ym(b−〈xm,w〉)+1 ≤ 0, m = 1, . . . ,M.

This is a linearly constrained quadratic program, and is clearly con-

2From Wikipedia: “Svm max sep hyperplane with margin” by Cyc - Own
work. Licensed under Public Domain via Wikimedia Commons.
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vex. The Lagrangian is

L(w, b,λ) =
1

2
‖w‖22 +

M∑
m=1

λm [ym(b− 〈xm,w〉) + 1]

=
1

2
‖w‖22 + bλTy − λTXTw + λT1,

where X is the N ×M matrix

X =

y1x1 y2x2 · · · yMxM

 .
The dual function is

g(λ) = inf
w,b

(
1

2
‖w‖22 + bλTy − λTXTw + λT1

)
.

Since b is unconstrained above, we see that the presence of bλTy
means that the dual will be −∞ unless 〈λ,y〉 = 0. Minimizing over
w, we need the gradient equal to zero,

∇wL(w, b,λ) = 0, ⇒ w −Xλ = 0.

This means that we must havew = Xλ, which itself is a very handy
fact as it gives us a direct passage from the dual solution to the primal
solution. With these substitutions, the dual function is

g(λ) =

{
1
2
‖Xλ‖22 − λTXTXλ + λT1, 〈λ,y〉 = 0,

−∞, otherwise.

The dual SVM program is then

maximize
λ

− 1

2
‖Xλ‖22 +

M∑
m=1

λm subject to 〈λ,y〉 = 0

λ ≥ 0.
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Given the solution λ? above, we can take w? = Xλ?, and the
classifier is

f (x) = 〈x,w?〉 − b?
= 〈x,Xλ?〉 − b?

=
M∑

m=1

λ?
mym〈x,xm〉 − b?.

Notice that the data xm appear only as linear functionals (i.e. inner
products with) x.

The key realization is that the for the dual program, the functional
depends on the data xm only through inner products, as

‖Xλ‖22 =
M∑
`=1

M∑
m=1

y`ym〈x`,xm〉.

This means we can replace 〈x`,xm〉 with any “positive kernel func-
tion” K(x`,xm) : RN⊗RN → R — a positive kernel just means that
the M×M matrix K(x`,xm) is in SM

+ for all choices of x1, . . . ,xM .

For example: you might take

K(x`,xm) = (1 + 〈x`,xm〉)2 = 1 + 2〈x`,xm〉 + 〈x`,xm〉2.

This means we have replaced the inner product of two vectors with
the inner product between two vectors which have been mapped into

12
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a higher dimensional space:


x1

x2
...
xN

 →



1
x1
...
xN

x2
1

x2
2
...
x2
N√

2x1x2
...√

2xN−1xN


A set of linear constraints on the coordinates on the right, then,
corresponds to a second order curve constraint (parabola, ellipse,
hyperbola) on the coordinate on the left.

Many kernels are possible. The advantage is that to train and use the
classifier, you never have to explicitly move to the higher dimensional
space — you just need to be able to compute K(x`,xm) for any pair
of inputs in RN . A popular choice of kernel is

K(x`,xm) = exp
(−γ‖x` − xm‖22

)
.

This is a perfectly valid positive kernel, and it is straightforward to
compute it for any pair of inputs. But it corresponds to mapping the
xm into an infinite dimensional space, then finding a hyperplane.
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Here is an example from Wikipedia3:

3“Kernel Machine” by Alisneaky — Own work. Licensed under CC0 via
Wikimedia Commons.
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