
Syx Pek Total Positivity Lecture #6

Let G be a Kac-Moody Group. Our goal today would be ot discuss the topological properties on the
non-negative half G≥0 (some of our results will extend to any semifield k, but we often require to
consider only k = Z for the necessary topological properties).

6.1 Setup

Let G be a Kac-Moody Group (one could consider GLn), W its Weyl group and by definition,

U±
≥0 =

⊔
w∈W

U±
w,>0

G≥0 =
⊔

u,v∈W

Gu,v,>0 =
⊔

u,v∈W

U+
u,>0T>0U

−
v,>0.

(1)

Recall that from the previous lecture, we have the bijection of sets

U±
w,≥0 = Rℓ(w)

>0

Gu,v,>0 = Rℓ(u)−ℓ(v)+rk(G)
>0 .

where u, v, w are elements of W and ℓ is the length function of W (in the sense of a Coxeter Group).
In this lecture, we shall upgrade this bijection of sets into a homeomorphism.
Furthermore, we shall show that Equation 1 is also a cellular decomposition (i.e. the Hausdorff closure

of each cell (Rk) is a union of cells. So U±
w,>0 is the union of cells of the form U±

v,>0.)

� We use G± as a short hand for G+ or G− (and similarly for U), do not be confused with
the introduction of a new symbol.

6.2 Example

Let us first compute an example first. For this subsection only, let G = GL3.
Then, 

1 0 0
α 1 0
β γ 1

 ∣∣∣∣∣∣ α, β, γ ∈ R

 U− R3

{(α, β, γ) ∈ R3 | αγ − β > 0} U−
≥0 R3

≥0

∼

∼

(2)

One can see the second equality in two different ways. We could see that the Weyl Group of G is of
type A2, which is finite so, having the longest word w0 with a minimal length representation c1c2c1,

(U−
≥0)

◦ = U−
w0,>0 = {y1(a)y2(b)y1(c) | a, b, c ∈ R>0}. (3)

Alternatively, one can recall the characterization of Totally Positive Matrices from Lecture 1, thus the

submatrix

(
α 1
β γ

)
must have positive determinant (positive minor). From this example, we can also

see that the closure relation is non-trivial.



We have that

U−
≥0 − U−

>0 = U−
e,>0 ⊔ U−

s1,>0 ⊔ U−
s2,>0 ⊔ U−

s1s2,>0 ⊔ U−
s2s1,>0

= R0
>0 ⊔ R1

>0 ⊔ R1
>0 ⊔ R2

>0 ⊔ R2
>0

but

R3
≥0 − R3

>0 = R0
>0 ⊔ R1

> ⊔ R1
>0 ⊔ R1

>0 ⊔ R2
>0 ⊔ R2

>0 ⊔ R2
>0.

6.3 Results

Lemma 6.1. The non-negative half U±
≥0 is closed in U±.

Proof. Without loss of generality, we shall consider the sets U−
≥0 and U−.

Our strategy is to show that the following composition of maps is proper. If the following composition
of maps is proper, then the map β has to be closed, showing our result.

(R≥0)
N U−

≥0 U− U−

[U−,U−]
∼= Rmα β γ

In order to define this map, we have to let sd1sd2 ...sdN be a reduced expression of the longest word.
Then, we let an element (a1, a2, ..., aN) ∈ (R≥0)

N be sent to
∏N

i=1 ydi(ai) ∈ U−
≥0. (

∏N
i=1 ci is notational

shorthand for c1c2...cN noting that the order is important.)
But any expression of the form γ ◦ β(

∏N
i=1 yαi

(ai)) is a m-dimensional vector with its i-coordinate∑
1≤j≤N,di=dj

aj. Hence, for any compact rectangle of the form

I = [0, b1]× [0, b2]× ...× [0, bm] ∈ Rm

the pre-image under our overall map is

(γ ◦ β ◦ α)−1(I) =

(a1, a2, ..., aN) ∈ (R≥0)
N

∣∣∣∣∣∣
∑

1≤j≤N,di=dj

aj ≤ bi

 .

This is compact in (R≥0)
N .

Example 6.2. Let us be explicit about the map α and γ in the case of G = GL3. In this case, for
(a1, a2, a3) ∈ (R≥0)

3 and the longest word to be of the form c1c2c1, where y1(a) corresponds to the
matrix 1 0 0

a 1 0
0 0 1


the maps α and γ are

α(a1, a2, a3) =

 1 0 0
a1 + a2 1 0
a1a2 a2 1


γ

 1 0 0
a1 + a2 1 0
a1a2 a2 1

 = (a1 + a3, a2).



Next, we summarize various properties of Lusztig’s Canonical Basis.

Theorem 6.3. Let G be a simply-laced Group and V ∈ Irrf. d.C[G] be an irreducible finite-dimensional
complex representation. Then,

a) End(V ) is a matrix group, with a fixed basis set S.

b) If g ∈ G≥0, then there exists g̃ ∈ End(V ) such that the (i, j)-th entry (g̃)ij ≥ 0 and
∏

i(g̃)ii ≥ 1
when using the basis S.

c) Furthermore, as in (b), if g ∈ G>0, then there exists g̃ ∈ End(V ) such that the (i, j)-th entry
(g̃)ij > 0 when using the basis S.

d) Let w be a highest weight vector, then w is an element of S.

Proof. See [Bump & Schilling’s Crystal Bases: Representations And Combinatorics §2.2, 15.3].

Remark 6.4. Here, G>0 means the set U+
>0T>0U

−
>0.

Example 6.5. Let us consider G = SLn with V ∼= Cn the standard representation. We can write an
element g ∈ G≥0 having the form in End(V ) = Matn×n(C),

g̃ =


a1 0 . . . 0
∗ a2 . . . 0
...

...
. . .

...
∗ ∗ . . . an



1 ∗ . . . ∗
0 1 . . . ∗
...

...
. . .

...
0 0 . . . 1



=


a1 + b1 ∗ . . . ∗

∗ a2 + b2 . . . ∗
...

...
. . .

...
∗ ∗ . . . an + bn

 ,

where ai, bi ∈ R≥0. But, we have the determinant
∏

i ai = 1, showing that
∏

i(ai + bi) ≥ 1.

Theorem 6.6. The non-negative part G≥0 is closed in G.

Proof. Let us first do it for the case where G is simply-laced.
Part 1: The closure of G≥0 is in B−B+.
A way to characterize an element g ∈ G to be contained in B−B+ is to say that whenever we have
V ∈ Irrf. d.C[G] to be a faithful irreducible finite-dimensional complex representation, with highest
weight vector λ, then the corresponding g̃ ∈ End(V ) satisfies g̃λ ̸= 0. Using Theorem 6.3, we can
see that any such g would satisfy

∏
i g̃ii > 1, and hence any g′ in the closure of G>0 would satisfy∏

i g̃
′
ii ≥ 1, which implies that g̃′λ ̸= 0. Hence, the closure has to lie in B−B+.

Part 2: Consider the following diagram

B−B+ U− × T × U+

G≥0 U−
≥0 × T>0 × U+

≥0

βα γ (4)

Here, the maps α and γ are closed by Theorem 6.1, while the map β is simply the identity component
included into T . Hence, this concludes the case where G is simply-laced
If G is not simply-laced, we can use folding. Let Ĝ be a simply-laced group with a diagram automor-
phism σ : Ĝ → Ĝ where (Ĝ)σ = G. By definition, G≥0 = (Ĝ≥0)

σ = (Ĝ≥0) ∩ Ĝσ = (Ĝ≥0) ∩G is closed
in G.



The next lemma shows the cellular decomposition of cells.

Lemma 6.7. Let W be the Weyl group, ≤ be the Bruhat order on the Weyl Group and w ∈ W . Then,

U−
w,>0 =

⊔
w′≤w

U−
w′,>0

.

Proof. First, we shall show U−
w,>0 ⊇

⊔
w′≤w U−

w′,>0. Let, c1c2...ck be a reduced expression for w. Then,
there exists an expression of any element w′ ≤ w as cd1cd2 ...cdr where 1 ≤ d1 < d2 < ... < dr ≤ k.
Thus, as limak→0 yk(ak) = 1, we can consider the set {limaj→0∀j∈J

∏
i yi(ai)} where J = {1, 2, ..., k} \

{d1, d2, ..., dr}.
Conversely, we have

U−
w,>0 ⊆ B+wB+ (5)

=
⊔

w′≤w

B+w′B+ (6)

and as U−≥ 0 is closed in U− and thus closed in G,

U−
w,>0 ⊆

⊔
w′≤w

(B+w′B+ ∩ U−
≥0) (7)

=
⊔

w′≤w

U−
w′,>0. (8)

Finally, we shall see that this are indeed “cells”.

Theorem 6.8. Let W be the Weyl group and w ∈ W . Then, we have the homeomorphism U−
w,>0

∼=
(R≥0)

ℓ(w).

Proof. We rely on the Invariance of Domain: let U is an open set in Rn and f : U → Rn be a
continuous injective map, then f(U) is open and f give us an homeomorphism between U and its
image f(U).
Consider the following map

f : (R≥0)
ℓ(w) × (R≥0)

N−ℓ(w) → U−
w,>0 × U−

w−1w0,>0
∼= U−

w0,>0
∼= U−

>0

by sending (a1, a2, ..., aℓ(w)) × (aℓ(w)+1, ..., aN) to
∏ℓ(w)

i=1 yi(ai) ×
∏N

i=ℓ(w)+1 yi(ai). Here, c1c2...cℓ(w) is a
reduced expression for w and c1c2...cN is a reduced expression for w0, the longest element.
When, w = e, this is a continuous injective map, and thus by Invariance of Domain, shows the case
where w = w0. This in turns shows the general case, as f is then an homeomorphism between the
domain and the image, and thus, the components of the products are also homeomorphisms.
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