Syx PEK TOoTAL POSITIVITY LECTURE #6

Let G be a Kac-Moody Group. Our goal today would be ot discuss the topological properties on the
non-negative half G (some of our results will extend to any semifield k, but we often require to
consider only K = Z for the necessary topological properties).

6.1 Setup
Let G be a Kac-Moody Group (one could consider GL,,), W its Weyl group and by definition,

Ugo = |_| Uzjuc,>0
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Recall that from the previous lecture, we have the bijection of sets

+ f(w)
Uw,zo = R>0
l(u)—L(v)+rk(G
Guvso = R>(O) (v)+1k(&)
where u, v, w are elements of W and ¢ is the length function of W (in the sense of a Coxeter Group).
In this lecture, we shall upgrade this bijection of sets into a homeomorphism.
Furthermore, we shall show that Equation 1 is also a cellular decomposition (i.e. the Hausdorff closure

of each cell (R¥) is a union of cells. So U$,>0 is the union of cells of the form Uqf>0.)

We use G* as a short hand for G or G~ (and similarly for U), do not be confused with
the introduction of a new symbol.

6.2 Example
Let us first compute an example first. For this subsection only, let G = GLs.

Then,

a 1 0||aByeERy =—=—U" —— R?

gy 1 ] (2)

{(0476,'7) € R3 ‘ CM’}/—B>0} E—

One can see the second equality in two different ways. We could see that the Weyl Group of G is of
type As, which is finite so, having the longest word wy with a minimal length representation cicacy,

(Uz0)° = Uy 50 = {p1(a)y2(b)y(c) | a,b, ¢ € Rso} (3)

— ~ 3
USo — R

Alternatively, one can recall the characterization of Totally Positive Matrices from Lecture 1, thus the

) «Q
submatrix
(5

see that the closure relation is non-trivial.

> must have positive determinant (positive minor). From this example, we can also



We have that

Uz_o - U;O = U7>0|—|U1>0 l—lU; >0 UUs:sz >o U ;251 >0

€ S
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but

R, — R, =R, URLLURL URL URZ URZ LIRS,

6.3 Results
Lemma 6.1. The non-negative half U 0 is closed in U*.

Proof. Without loss of generality, we shall consider the sets U5, and U™,
Our strategy is to show that the following composition of maps is proper. If the following composition
of maps is proper, then the map § has to be closed, showing our result.

B

(Reo)N —"= Uy —— U™ —— gl =R"

In order to define this map, we have to let sg,54,...54, be a reduced expression of the longest word.
Then, we let an element (ay, g, ..., ay) € (Rso)Y be sent to [, va, (a;) € UZ,y. (I, ¢ is notational
shorthand for ¢;cs...cy noting that the order is important.) -

But any expression of the form v o g (Hf\il Ya;(a;)) is @ m-dimensional vector with its i-coordinate
> <i<Ndi—d; - Hence, for any compact rectangle of the form

I =1[0,b1] x[0,b2] X ... x [0,b,,,] €R™

the pre-image under our overall map is

(yoBoa) '(I) = ¢ (a1,az,...;an) € (Rso)™ Z a; < b;

1<j <N di=d;
This is compact in (Rsg)". O

Example 6.2. Let us be explicit about the map o and ~ in the case of G = GLs. In this case, for

(a1,as,a3) € (Rsg)® and the longest word to be of the form cicacy, where yi(a) corresponds to the
matriz

1 00
a 1 0
0 0 1
the maps o and vy are
1 0 0
alar,as,a3) = [ag+ax 1 0
a1Qa9 a9 1
1 0 0
Y| ar + Qo 1 0 = (a1 + ag,ag).
ajas asg 1



Next, we summarize various properties of Lusztig’s Canonical Basis.

Theorem 6.3. Let G be a simply-laced Group and V' € Irry 4 C[G] be an irreducible finite-dimensional
complex representation. Then,

a) End(V) is a matriz group, with a fixved basis set S.

b) If g € G>o, then there exists g € End(V') such that the (i, j)-th entry (§)ij > 0 and [[,(§)u > 1
when using the basis S.

c¢) Furthermore, as in (b), if g € G=o, then there exists g € End(V') such that the (i,7)-th entry
(9)ij > 0 when using the basis S.

d) Let w be a highest weight vector, then w is an element of S.
Proof. See [Bump & Schilling’s Crystal Bases: Representations And Combinatorics §2.2, 15.3]. n
Remark 6.4. Here, G~ means the set UL, TsoUZ,,.

Example 6.5. Let us consider G = SL,, with V' = C" the standard representation. We can write an
element g € G>¢ having the form in End(V') = Mat,,»,(C),

a 0 ... 0 1 % *
~ * ag ... O 01 ... =
9= :

* ok an 00 1

a1+b1 * *

* as +by ... *
* * ce. Gy + by

where a;,b; € R>g. But, we have the determinant [ [, a; = 1, showing that [],(a; +b;) > 1
Theorem 6.6. The non-negative part G>q is closed in G.

Proof. Let us first do it for the case where G is simply-laced.

Part 1: The closure of G is in B~ B™.

A way to characterize an element g € G to be contained in B~ B* is to say that whenever we have
V' € Irry. q.C[G] to be a faithful irreducible finite-dimensional complex representation, with highest
weight vector A, then the corresponding g € End(V) satisfies §/\ # 0. Using Theorem 6.3, we can
see that any such g would satisfy I1; 3 > 1, and hence any ¢’ in the closure of G~ would satisfy
IL q + = 1, which implies that g\ #0. Hence the closure has to lie in B~ B™.

Part 2: Con81der the following diagram

B Bt == U xTxU™"
| o] A e
GZO _ UZ_O X T>0 X U;O

Here, the maps « and ~ are closed by Theorem 6.1, while the map [ is simply the identity component
included into T'. Hence, this concludes the case where G is simply-laced

If G is not simply-laced, we can use folding. Let G be a simply-laced group with a diagram automor-
phism o : G — G where (G)” = G. By definition, G=o = (G=0)” = (Gs0) NG = (Gs0) NG is closed
in G. O



The next lemma shows the cellular decomposition of cells.

Lemma 6.7. Let W be the Weyl group, < be the Bruhat order on the Weyl Group and w € W. Then,

Uw,>0 = I_I Uw’,>0

w’'<w

Proof. First, we shall show U >0 2 L, ‘<w Uw >0- Let, cica...c;, be a reduced expression for w. Then,
there exists an expression of any element w’ § W as Cq,Cd,...Cq, Where 1 < dy < dy < ... < d, < k.
Thus, as lim,, 0 yx(ax) = 1, we can consider the set {lim,, ovjes [[; ¥i(a:)} where J = {1, 2, k}\
{di,ds,...,d,}.

Conversely, we have

Us - C BruB* (5)
= |—| B+w/B+ (6)
w!' <w

and as U™> 0 is closed in U~ and thus closed in G,

w>0 & |_| Bt B+ﬂU>o) (7)
w' <w

= || Uy o (8)
w!' <w

O

Finally, we shall see that this are indeed “cells”.

Theorem 6.8. Let W be the Weyl group and w € W. Then, we have the homeomorphism U, ., =
(Rx0) ™)

Proof. We rely on the Invariance of Domain: let U is an open set in R" and f : U — R" be a
continuous injective map, then f(U) is open and f give us an homeomorphism between U and its
image f(U).

Consider the following map

f : (Rzo)g( ) (R>0)N t(w) — U_>0 X U_ =2U- = U,

Lwe,>0 — “woe,>0 — ¥ >0

by sending (a1, az; ..., Ggw)) X (Qgw)41, - an) tO Hf(:ui) yi(a;) X Hi]\;g(w)ﬂ yi(a;). Here, cica...cop) is a
reduced expression for w and cycs...cy is a reduced expression for wy, the longest element.

When, w = e, this is a continuous injective map, and thus by Invariance of Domain, shows the case
where w = wy. This in turns shows the general case, as f is then an homeomorphism between the
domain and the image, and thus, the components of the products are also homeomorphisms. O
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