Total Variation in Image Analysis (The Homo Erectus Stage?)

François Lauze

¹ Department of Computer Science University of Copenhagen

Hólar Summer School on Sparse Coding, August 2010

Outline

1 Motivation

- Origin and uses of Total Variation
- Denoising
- Tikhonov regularization
- 1-D computation on step edges

2 Total Variation I

- First definition
- Rudin-Osher-Fatemi
- Inpainting/Denoising

3 Total Variation II

- Relaxing the derivative constraints
- Definition in action
- Using the new definition in denoising: Chambolle algorithm

・ コット (雪) (小田) (コット 日)

Image Simplification

4 Bibliography

5 The End

- Motivation

Origin and uses of Total Variation

Outline

1 Motivation

Origin and uses of Total Variation

- Denoising
- Tikhonov regularization
- 1-D computation on step edges

2 Total Variation

- First definition
- Rudin-Osher-Fatemi
- Inpainting/Denoising

3 Total Variation II

- Relaxing the derivative constraints
- Definition in action
- Using the new definition in denoising: Chambolle algorithm

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

Image Simplification

4 Bibliography

5 The End

- In mathematics: the Plateau problem of minimal surfaces, i.e. surfaces of minimal area with a given boundary
- In image analysis: denoising, image reconstruction, segmentation...
- An ubiquitous prior for many image processing tasks.

In mathematics: the Plateau problem of minimal surfaces, i.e. surfaces of minimal area with a given boundary

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In image analysis: denoising, image reconstruction, segmentation...

An ubiquitous prior for many image processing tasks.

In mathematics: the Plateau problem of minimal surfaces, i.e. surfaces of minimal area with a given boundary

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへの

- In image analysis: denoising, image reconstruction, segmentation...
- An ubiquitous prior for many image processing tasks.

- Motivation

L Denoising

Outline

1 Motivation

Origin and uses of Total Variation

Denoising

- Tikhonov regularization
- 1-D computation on step edges

2 Total Variation

- First definition
- Rudin-Osher-Fatemi
- Inpainting/Denoising

3 Total Variation II

- Relaxing the derivative constraints
- Definition in action
- Using the new definition in denoising: Chambolle algorithm

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

ъ

Image Simplification

4 Bibliography

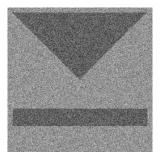
5 The End

Total		

Denoising

Denoising

Determine an unknown image from a noisy observation.



ヘロン 人間 とくほど 人ほど 一日

Total	Variation	

Methods

All methods based on some statistical inference.

- Fourier/Wavelets
- Markov Random Fields
- Variational and Partial Differential Equations methods

...

We focus on variational and PDE methods.

L Denoising

A simple corruption model

- A digital image *u* of size $N \times M$ pixels, corrupted by Gaussian white noise of variance σ^2
- write it as observed image $u_0 = u + \eta$, $||u u_0||^2 = \sum_{ij} (u_{ij} u_{0ij})^2 = NM\sigma^2$ (noise variance = σ^2), $\sum_{ij} u_{ij} = \sum_{ij} u_{0ij}$ (zero mean noise).
- could add a blur degradation $u_0 = Ku + \eta$ for instance, so to have $||Ku u_0||^2 = NM\sigma^2$.

L Denoising

A simple corruption model

A digital image *u* of size $N \times M$ pixels, corrupted by Gaussian white noise of variance σ^2

- write it as observed image $u_0 = u + \eta$, $||u u_0||^2 = \sum_{ij} (u_{ij} u_{0ij})^2 = NM\sigma^2$ (noise variance = σ^2), $\sum_{ij} u_{ij} = \sum_{ij} u_{0ij}$ (zero mean noise).
- could add a blur degradation $u_0 = Ku + \eta$ for instance, so to have $||Ku u_0||^2 = NM\sigma^2$.

L Denoising

A simple corruption model

- A digital image *u* of size $N \times M$ pixels, corrupted by Gaussian white noise of variance σ^2
- write it as observed image $u_0 = u + \eta$, $||u u_0||^2 = \sum_{ij} (u_{ij} u_{0ij})^2 = NM\sigma^2$ (noise variance = σ^2), $\sum_{ij} u_{ij} = \sum_{ij} u_{0ij}$ (zero mean noise).

• could add a blur degradation $u_0 = Ku + \eta$ for instance, so to have $||Ku - u_0||^2 = NM\sigma^2$.

Denoising

A simple corruption model

- A digital image *u* of size $N \times M$ pixels, corrupted by Gaussian white noise of variance σ^2
- write it as observed image $u_0 = u + \eta$, $||u u_0||^2 = \sum_{ij} (u_{ij} u_{0ij})^2 = NM\sigma^2$ (noise variance = σ^2), $\sum_{ij} u_{ij} = \sum_{ij} u_{0ij}$ (zero mean noise).
- could add a blur degradation $u_0 = Ku + \eta$ for instance, so to have $||Ku u_0||^2 = NM\sigma^2$.

Denoising

A simple corruption model

- A digital image *u* of size $N \times M$ pixels, corrupted by Gaussian white noise of variance σ^2
- write it as observed image $u_0 = u + \eta$, $||u u_0||^2 = \sum_{ij} (u_{ij} u_{0ij})^2 = NM\sigma^2$ (noise variance = σ^2), $\sum_{ij} u_{ij} = \sum_{ij} u_{0ij}$ (zero mean noise).
- could add a blur degradation $u_0 = Ku + \eta$ for instance, so to have $||Ku u_0||^2 = NM\sigma^2$.

Total Variation		

Denoising

Recovery

The problem: Find *u* such that

$$||u - u_0||^2 = NM\sigma^2, \quad \sum_{ij} u_{ij} = \sum_{ij} u_{0ij}$$
 (1)

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

- In order to recover u, extra information is needed, e.g. in the form of a prior on u.
- For images, smoothness priors often used.
- Let Ru a digital gradient of u, Then find smoothest u that satisfy constraints (1), the smoothest meaning with smallest

$$T(u) = ||Ru|| = \sqrt{\sum_{ij} |Ru|_{ij}^2}.$$

Variation

Denoising

Recovery

The problem: Find *u* such that

$$||u - u_0||^2 = NM\sigma^2, \quad \sum_{ij} u_{ij} = \sum_{ij} u_{0ij}$$
 (1)

イロト イポト イヨト イヨト 三日

- In order to recover *u*, extra information is needed, e.g. in the form of a prior on *u*.
- For images, smoothness priors often used.
- Let Ru a digital gradient of u, Then find smoothest u that satisfy constraints (1), the smoothest meaning with smallest

$$T(u) = ||Ru|| = \sqrt{\sum_{ij} |Ru|_{ij}^2}.$$

Total	Variation

L Denoising

Recovery

The problem: Find *u* such that

$$||u - u_0||^2 = NM\sigma^2, \quad \sum_{ij} u_{ij} = \sum_{ij} u_{0ij}$$
 (1)

人口 医水黄 医水黄 医水黄 化口

- In order to recover u, extra information is needed, e.g. in the form of a prior on u.
- For images, smoothness priors often used.
- Let Ru a digital gradient of u, Then find smoothest u that satisfy constraints (1), the smoothest meaning with smallest

$$T(u) = ||Ru|| = \sqrt{\sum_{ij} |Ru|_{ij}^2}.$$

Total	Variation

L Denoising

Recovery

The problem: Find *u* such that

$$||u - u_0||^2 = NM\sigma^2, \quad \sum_{ij} u_{ij} = \sum_{ij} u_{0ij}$$
 (1)

人口 医水黄 医水黄 医水黄 化口

- In order to recover u, extra information is needed, e.g. in the form of a prior on u.
- For images, smoothness priors often used.
- Let Ru a digital gradient of u, Then find smoothest u that satisfy constraints (1), the smoothest meaning with smallest

$$T(u) = ||Ru|| = \sqrt{\sum_{ij} |Ru|_{ij}^2}.$$

Total	Variation

L Denoising

Recovery

The problem: Find *u* such that

$$||u - u_0||^2 = NM\sigma^2, \quad \sum_{ij} u_{ij} = \sum_{ij} u_{0ij}$$
 (1)

(日) (圖) (E) (E) (E)

- In order to recover *u*, extra information is needed, e.g. in the form of a prior on *u*.
- For images, smoothness priors often used.
- Let *Ru* a digital gradient of *u*, Then find smoothest *u* that satisfy constraints (1), the smoothest meaning with smallest

$$T(u) = \|Ru\| = \sqrt{\sum_{ij} |Ru|_{ij}^2}.$$

- Motivation

Tikhonov regularization

Outline

1 Motivation

- Origin and uses of Total Variation
- Denoising

Tikhonov regularization

1-D computation on step edges

2 Total Variation

- First definition
- Rudin-Osher-Fatemi
- Inpainting/Denoising

3 Total Variation I

- Relaxing the derivative constraints
- Definition in action
- Using the new definition in denoising: Chambolle algorithm

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

Image Simplification

4 Bibliography

5 The End

- Motivation

L Tikhonov regularization

Tikhonov regularization

It can be show that this is equivalent to minimize

$$E(u) = ||Ku - u_0||^2 + \lambda ||Ru||^2$$

for a $\lambda = \lambda(\sigma)$ (Wahba?).

 \blacksquare E(u) minimizaton can be derived from a Maximum a Posteriori formulation

$$\operatorname{Arg.max}_{u} p(u|u_0) = \frac{p(u_0|u)p(u)}{p(u_0)}$$

Rewriting in a continuous setting:

$$E(u) = \int_{\Omega} (Ku - u_0)^2 \, dx + \lambda \int_{\Omega} |\nabla u|^2 \, dx$$

<ロ> <四> <四> <三> <三> <三> <三> <三> <三

- Motivation

Tikhonov regularization

Tikhonov regularization

It can be show that this is equivalent to minimize

$$E(u) = ||Ku - u_0||^2 + \lambda ||Ru||^2$$

for a $\lambda = \lambda(\sigma)$ (Wahba?).

 \blacksquare E(u) minimizaton can be derived from a Maximum a Posteriori formulation

$$\operatorname{Arg.max}_{u} p(u|u_0) = \frac{p(u_0|u)p(u)}{p(u_0)}$$

Rewriting in a continuous setting:

$$E(u) = \int_{\Omega} (Ku - u_0)^2 \, dx + \lambda \int_{\Omega} |\nabla u|^2 \, dx$$

◆□ → ◆圖 → ◆ 圖 → ◆ 圖 → □ 圖 □

- Motivation

Tikhonov regularization

Tikhonov regularization

It can be show that this is equivalent to minimize

$$E(u) = ||Ku - u_0||^2 + \lambda ||Ru||^2$$

for a $\lambda = \lambda(\sigma)$ (Wahba?).

 \blacksquare E(u) minimizaton can be derived from a Maximum a Posteriori formulation

$$\operatorname{Arg.max}_{u} p(u|u_0) = \frac{p(u_0|u)p(u)}{p(u_0)}$$

Rewriting in a continuous setting:

$$E(u) = \int_{\Omega} (Ku - u_0)^2 \, dx + \lambda \int_{\Omega} |\nabla u|^2 \, dx$$

◆□ → ◆圖 → ◆ 圖 → ◆ 圖 → □ 圖 □

- Motivation

Tikhonov regularization

Tikhonov regularization

It can be show that this is equivalent to minimize

$$E(u) = ||Ku - u_0||^2 + \lambda ||Ru||^2$$

for a $\lambda = \lambda(\sigma)$ (Wahba?).

 $\mathbf{E}(u)$ minimizaton can be derived from a Maximum a Posteriori formulation

$$\operatorname{Arg.max}_{u} p(u|u_0) = \frac{p(u_0|u)p(u)}{p(u_0)}$$

Rewriting in a continuous setting:

$$E(u) = \int_{\Omega} (Ku - u_o)^2 \, dx + \lambda \int_{\Omega} |\nabla u|^2 \, dx$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへの

- Motivation

Tikhonov regularization

Tikhonov regularization

It can be show that this is equivalent to minimize

$$E(u) = ||Ku - u_0||^2 + \lambda ||Ru||^2$$

for a $\lambda = \lambda(\sigma)$ (Wahba?).

 $\mathbf{E}(u)$ minimizaton can be derived from a Maximum a Posteriori formulation

$$\operatorname{Arg.max}_{u} p(u|u_0) = \frac{p(u_0|u)p(u)}{p(u_0)}$$

Rewriting in a continuous setting:

$$E(u) = \int_{\Omega} (Ku - u_o)^2 dx + \lambda \int_{\Omega} |\nabla u|^2 dx$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへの

- Motivation

L Tikhonov regularization

How to solve?

Solution satisfies the Euler-Lagrange equation for *E*:

$$K^* (Ku - u_0) - \lambda \Delta u = 0.$$

 $(K^* \text{ is the adjoint of } K)$

A linear equation, easy to implement, and many fast solvers exit, but...

- Motivation

Tikhonov regularization

Solution satisfies the Euler-Lagrange equation for *E*:

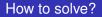
 $K^* (Ku - u_0) - \lambda \Delta u = 0.$

(K* is the adjoint of K)

A linear equation, easy to implement, and many fast solvers exit, but...

- Motivation

Tikhonov regularization



Solution satisfies the Euler-Lagrange equation for *E*:

$$K^* (Ku - u_0) - \lambda \Delta u = 0.$$

(K* is the adjoint of K)

A linear equation, easy to implement, and many fast solvers exit, but...

L Tikhonov regularization

Tikhonov example

Denoising example, K = Id.

Original	$\lambda =$ 50	$\lambda =$ 500
	_	•

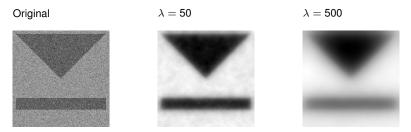
- Not good: images contain edges but Tikhonov blur them. Why?
- The term $\int_{\Omega} (u u_0)^2 dx$: not guilty!
- Then it must be $\int_{\Omega} |\nabla u|^2 dx$. Derivatives and step edges do not go too well together?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

L Tikhonov regularization

Tikhonov example

Denoising example, K = Id.



Not good: images contain edges but Tikhonov blur them. Why?

- The term $\int_{\Omega} (u u_0)^2 dx$: not guilty!
- Then it must be $\int_{\Omega} |\nabla u|^2 dx$. Derivatives and step edges do not go too well together?

(日)

L Tikhonov regularization

Tikhonov example

Denoising example, K = Id.

Original	$\lambda=$ 50	$\lambda=$ 500
	•	•

- Not good: images contain edges but Tikhonov blur them. Why?
- The term $\int_{\Omega} (u u_0)^2 dx$: not guilty!

Then it must be $\int_{\Omega} |\nabla u|^2 dx$. Derivatives and step edges do not go too well together?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

L Tikhonov regularization

Tikhonov example

Denoising example, K = Id.

Original	$\lambda =$ 50	$\lambda=$ 500
	_	•

- Not good: images contain edges but Tikhonov blur them. Why?
- The term $\int_{\Omega} (u u_0)^2 dx$: not guilty!
- Then it must be $\int_{\Omega} |\nabla u|^2 dx$. Derivatives and step edges do not go too well together?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Motivation

- 1-D computation on step edges

Outline

1 Motivation

- Origin and uses of Total Variation
- Denoising
- Tikhonov regularization

1-D computation on step edges

2 Total Variation I

- First definition
- Rudin-Osher-Fatemi
- Inpainting/Denoising

3 Total Variation II

- Relaxing the derivative constraints
- Definition in action
- Using the new definition in denoising: Chambolle algorithm

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

Image Simplification

4 Bibliography

5 The End

Set $\Omega = [-1, 1]$, *a* a real number and *u* the step-edge function

$$u(x) = \begin{cases} 0 & x \le 0 \\ a & x > 0 \end{cases}$$

Not differentiable at 0, but forget about it and try to compute

$$\int_{-1}^{1} |u'(x)|^2 \, dx.$$

Around 0 "approximate" u'(x) by

$$\frac{u(h)-u(-h)}{2h}, \quad h > 0, \text{ small}$$

Set $\Omega = [-1, 1]$, *a* a real number and *u* the step-edge function

$$u(x) = \begin{cases} 0 & x \le 0 \\ a & x > 0 \end{cases}$$

Not differentiable at 0, but forget about it and try to compute

$$\int_{-1}^{1} |u'(x)|^2 \, dx.$$

Around 0 "approximate" u'(x) by

$$\frac{u(h)-u(-h)}{2h}, \quad h > 0, \text{ small}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Set $\Omega = [-1, 1]$, *a* a real number and *u* the step-edge function

$$u(x) = \begin{cases} 0 & x \le 0 \\ a & x > 0 \end{cases}$$

Not differentiable at 0, but forget about it and try to compute

$$\int_{-1}^{1} |u'(x)|^2 \, dx.$$

Around 0 "approximate" u'(x) by

$$\frac{u(h)-u(-h)}{2h}, \quad h>0, \text{small}$$

$$u'(x) \approx \frac{a}{2h}, \quad x \in [-h,h]$$

then

$$\int_{-1}^{1} |u'(x)|^2 dx = \int_{-1}^{-h} |u'(x)|^2 dx + \int_{-h}^{h} |u'(x)|^2 dx + \int_{h}^{1} |u'(x)|^2 dx$$
$$= 0 + 2h \times \left(\frac{a}{2h}\right)^2 + 0$$
$$= \frac{a^2}{2h} \to \infty, \quad h \to 0$$

So a step-edge has "infinite energy". It cannot minimizes Tikhonov.
 What went "wrong": the square:

$$u'(x) \approx \frac{a}{2h}, \quad x \in [-h,h]$$

then

$$\int_{-1}^{1} |u'(x)|^2 dx = \int_{-1}^{-h} |u'(x)|^2 dx + \int_{-h}^{h} |u'(x)|^2 dx + \int_{h}^{1} |u'(x)|^2 dx$$
$$= 0 + 2h \times \left(\frac{a}{2h}\right)^2 + 0$$
$$= \frac{a^2}{2h} \to \infty, \quad h \to 0$$

- So a step-edge has "infinite energy". It cannot minimizes Tikhonov.
- What went "wrong": the square:

$$u'(x) \approx \frac{a}{2h}, \quad x \in [-h, h]$$

$$\int_{-1}^{1} |u'(x)|^2 dx = \int_{-1}^{-h} |u'(x)|^2 dx + \int_{-h}^{h} |u'(x)|^2 dx + \int_{h}^{1} |u'(x)|^2 dx$$
$$= 0 + 2h \times \left(\frac{a}{2h}\right)^2 + 0$$
$$= \frac{a^2}{2h} \to \infty, \quad h \to 0$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

So a step-edge has "infinite energy". It cannot minimizes Tikhonov.

■ What went "wrong": the square:

$$u'(x) \approx \frac{a}{2h}, \quad x \in [-h, h]$$

$$\int_{-1}^{1} |u'(x)|^2 dx = \int_{-1}^{-h} |u'(x)|^2 dx + \int_{-h}^{h} |u'(x)|^2 dx + \int_{h}^{1} |u'(x)|^2 dx$$
$$= 0 + 2h \times \left(\frac{a}{2h}\right)^2 + 0$$
$$= \frac{a^2}{2h} \to \infty, \quad h \to 0$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

- So a step-edge has "infinite energy". It cannot minimizes Tikhonov.
- What went "wrong": the square:

$$u'(x) \approx \frac{a}{2h}, \quad x \in [-h,h]$$

$$\int_{-1}^{1} |u'(x)|^2 dx = \int_{-1}^{-h} |u'(x)|^2 dx + \int_{-h}^{h} |u'(x)|^2 dx + \int_{h}^{1} |u'(x)|^2 dx$$
$$= 0 + 2h \times \left(\frac{a}{2h}\right)^2 + 0$$
$$= \frac{a^2}{2h} \to \infty, \quad h \to 0$$

- So a step-edge has "infinite energy". It cannot minimizes Tikhonov.
- What went "wrong": the square:

Replace the square in the previous computation by p > 0 and redo:
 Then

$$\int_{-1}^{1} |u'(x)|^{p} dx = \int_{-1}^{-h} |u'(x)|^{p} dx + \int_{-h}^{h} |u'(x)|^{p} dx + \int_{h}^{1} |u'(x)|^{p} dx$$
$$= 0 + 2h \times \left|\frac{a}{2h}\right|^{p} + 0$$
$$= |a|^{p} (2h)^{1-p} < \infty \quad \text{when } p \le 1$$

- When $p \le 1$ this is finite! Edges can survive here!
- **Quite ugly when** p < 1 (but not uninteresting)
- When p = 1, this is the Total Variation of u.

Replace the square in the previous computation by p > 0 and redo:

Then

$$\int_{-1}^{1} |u'(x)|^{p} dx = \int_{-1}^{-h} |u'(x)|^{p} dx + \int_{-h}^{h} |u'(x)|^{p} dx + \int_{h}^{1} |u'(x)|^{p} dx$$
$$= 0 + 2h \times \left|\frac{a}{2h}\right|^{p} + 0$$
$$= |a|^{p} (2h)^{1-p} < \infty \quad \text{when } p \le 1$$

• When $p \le 1$ this is finite! Edges can survive here!

- **Quite ugly when** p < 1 (but not uninteresting)
- When p = 1, this is the Total Variation of u.

Replace the square in the previous computation by p > 0 and redo:

Then

$$\begin{aligned} \int_{-1}^{1} |u'(x)|^{p} \, dx &= \int_{-1}^{-h} |u'(x)|^{p} \, dx + \int_{-h}^{h} |u'(x)|^{p} \, dx + \int_{h}^{1} |u'(x)|^{p} \, dx \\ &= 0 + 2h \times \left|\frac{a}{2h}\right|^{p} + 0 \\ &= |a|^{p} (2h)^{1-p} < \infty \quad \text{when } p \le 1 \end{aligned}$$

• When $p \le 1$ this is finite! Edges can survive here!

- **Quite ugly when** p < 1 (but not uninteresting)
- When p = 1, this is the Total Variation of u.

- Replace the square in the previous computation by p > 0 and redo:
- Then

$$\int_{-1}^{1} |u'(x)|^{p} dx = \int_{-1}^{-h} |u'(x)|^{p} dx + \int_{-h}^{h} |u'(x)|^{p} dx + \int_{h}^{1} |u'(x)|^{p} dx$$
$$= 0 + 2h \times \left|\frac{a}{2h}\right|^{p} + 0$$
$$= |a|^{p} (2h)^{1-p} < \infty \quad \text{when } p \le 1$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- When $p \le 1$ this is finite! Edges can survive here!
- **Quite ugly when** p < 1 (but not uninteresting)
- When p = 1, this is the Total Variation of u.

- Replace the square in the previous computation by p > 0 and redo:
- Then

$$\int_{-1}^{1} |u'(x)|^{p} dx = \int_{-1}^{-h} |u'(x)|^{p} dx + \int_{-h}^{h} |u'(x)|^{p} dx + \int_{h}^{1} |u'(x)|^{p} dx$$
$$= 0 + 2h \times \left|\frac{a}{2h}\right|^{p} + 0$$
$$= |a|^{p} (2h)^{1-p} < \infty \quad \text{when } p \le 1$$

- When $p \le 1$ this is finite! Edges can survive here!
- **Quite ugly when** p < 1 (but not uninteresting)
- When p = 1, this is the Total Variation of u.

- Replace the square in the previous computation by p > 0 and redo:
- Then

$$\int_{-1}^{1} |u'(x)|^{p} dx = \int_{-1}^{-h} |u'(x)|^{p} dx + \int_{-h}^{h} |u'(x)|^{p} dx + \int_{h}^{1} |u'(x)|^{p} dx$$
$$= 0 + 2h \times \left|\frac{a}{2h}\right|^{p} + 0$$
$$= |a|^{p} (2h)^{1-p} < \infty \quad \text{when } p \le 1$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- When $p \leq 1$ this is finite! Edges can survive here!
- **Quite ugly when** p < 1 (but not uninteresting)
- When p = 1, this is the Total Variation of u.

Total Variation I

First definition

Outline

1 Motivation

- Origin and uses of Total Variation
- Denoising
- Tikhonov regularization
- 1-D computation on step edges

2 Total Variation I

First definition

- Rudin-Osher-Fatemi
- Inpainting/Denoising

3 Total Variation II

- Relaxing the derivative constraints
- Definition in action
- Using the new definition in denoising: Chambolle algorithm

・ロト ・ 『 ト ・ ヨ ト ・ ヨ ト

ъ

Image Simplification

4 Bibliography

5 The End

First definition

Let $u : \Omega \subset \mathbb{R}^n \to \mathbb{R}$. Define total variation as

$$J(u) = \int_{\Omega} |\nabla u| \, dx, \quad |\nabla u| = \sqrt{\sum_{i=1}^{n} u_{x_i}^2}.$$

When J(u) is finite, one says that u has bounded variations and the space of function of bounded variations on Ω is denoted $BV(\Omega)$.

Let $u : \Omega \subset \mathbb{R}^n \to \mathbb{R}$. Define total variation as

$$J(u) = \int_{\Omega} |\nabla u| \, dx, \quad |\nabla u| = \sqrt{\sum_{i=1}^{n} u_{x_i}^2}.$$

• When J(u) is finite, one says that u has bounded variations and the space of function of bounded variations on Ω is denoted $BV(\Omega)$.

Total Variati	on		
L Total Va	riation I		
First	definition		

- Expected: when minimizing J(u) with other constraints, edges are less penalized that with Tikhonov.
- Indeed edges are "naturally present" in bounded variation functions. In fact: functions of bounded variations can be decomposed in
 - III smooth parts, ∀*u* well defined,
 - 🗐 Jump discontinuities (our edges)
 - III something else (Cantor part) which can be nasty....
- The functions that do not possess this nasty part form a subspace of BV(Ω) called SBV(Ω), The Special functions of Bounded Variation, (used for instance when studying Mumford-Shah functional)

Total	Variation

Expected: when minimizing J(u) with other constraints, edges are less penalized that with Tikhonov.

Indeed edges are "naturally present" in bounded variation functions. In fact: functions of bounded variations can be decomposed in

III smooth parts, *∨u* well defined,

- 🔲 Jump discontinuities (our edges)
- Something else (Cantor part) which can be nasty....
- The functions that do not possess this nasty part form a subspace of BV(Ω) called SBV(Ω), The Special functions of Bounded Variation, (used for instance when studying Mumford-Shah functional)

Total Variation			
Total Variation	il.		
First defini	tion		

- Expected: when minimizing J(u) with other constraints, edges are less penalized that with Tikhonov.
- Indeed edges are "naturally present" in bounded variation functions. In fact: functions of bounded variations can be decomposed in
 - smooth parts, ∇u well defined,
 - Jump discontinuities (our edges)
 - something else (Cantor part) which can be nasty...
- The functions that do not possess this nasty part form a subspace of BV(Ω) called SBV(Ω), The Special functions of Bounded Variation, (used for instance when studying Mumford-Shah functional)

Total Variation			
Total Variation	il.		
First defini	tion		

- Expected: when minimizing J(u) with other constraints, edges are less penalized that with Tikhonov.
- Indeed edges are "naturally present" in bounded variation functions. In fact: functions of bounded variations can be decomposed in
 - smooth parts, ∇u well defined,
 - Jump discontinuities (our edges)
 - something else (Cantor part) which can be nasty...
- The functions that do not possess this nasty part form a subspace of BV(Ω) called SBV(Ω), The Special functions of Bounded Variation, (used for instance when studying Mumford-Shah functional)

Tota	Variation	
L.	otal Variation I	
	- First definition	

- Expected: when minimizing J(u) with other constraints, edges are less penalized that with Tikhonov.
- Indeed edges are "naturally present" in bounded variation functions. In fact: functions of bounded variations can be decomposed in

Jump discontinuities (our edges)

something else (Cantor part) which can be nasty...

The functions that do not possess this nasty part form a subspace of BV(Ω) called SBV(Ω), The Special functions of Bounded Variation, (used for instance when studying Mumford-Shah functional)

Tota	Variation	
L.	otal Variation I	
	- First definition	

- Expected: when minimizing J(u) with other constraints, edges are less penalized that with Tikhonov.
- Indeed edges are "naturally present" in bounded variation functions. In fact: functions of bounded variations can be decomposed in

Jump discontinuities (our edges)

something else (Cantor part) which can be nasty...

The functions that do not possess this nasty part form a subspace of BV(Ω) called SBV(Ω), The Special functions of Bounded Variation, (used for instance when studying Mumford-Shah functional)

Total Variation			
Total Variation I			
First definition			

- Expected: when minimizing J(u) with other constraints, edges are less penalized that with Tikhonov.
- Indeed edges are "naturally present" in bounded variation functions. In fact: functions of bounded variations can be decomposed in

- 2 Jump discontinuities (our edges)
- something else (Cantor part) which can be nasty...
- The functions that do not possess this nasty part form a subspace of BV(Ω) called SBV(Ω), The Special functions of Bounded Variation, (used for instance when studying Mumford-Shah functional)

Total Variation			
Total Variation I			
First definition			

- Expected: when minimizing J(u) with other constraints, edges are less penalized that with Tikhonov.
- Indeed edges are "naturally present" in bounded variation functions. In fact: functions of bounded variations can be decomposed in

- 2 Jump discontinuities (our edges)
- something else (Cantor part) which can be nasty...
- The functions that do not possess this nasty part form a subspace of BV(Ω) called SBV(Ω), The Special functions of Bounded Variation, (used for instance when studying Mumford-Shah functional)

Tota	Total Variation	
L.	Total Variation I	
	First definition	

- Expected: when minimizing J(u) with other constraints, edges are less penalized that with Tikhonov.
- Indeed edges are "naturally present" in bounded variation functions. In fact: functions of bounded variations can be decomposed in

- 2 Jump discontinuities (our edges)
- 3 something else (Cantor part) which can be nasty...
- The functions that do not possess this nasty part form a subspace of $BV(\Omega)$ called $SBV(\Omega)$, The Special functions of Bounded Variation, (used for instance when studying Mumford-Shah functional)

Total Variation			
Total Varia	ation I		
First de	efinition		

- Expected: when minimizing J(u) with other constraints, edges are less penalized that with Tikhonov.
- Indeed edges are "naturally present" in bounded variation functions. In fact: functions of bounded variations can be decomposed in

- 2 Jump discontinuities (our edges)
- 3 something else (Cantor part) which can be nasty...
- The functions that do not possess this nasty part form a subspace of BV(Ω) called SBV(Ω), The Special functions of Bounded Variation, (used for instance when studying Mumford-Shah functional)

Total Variation I

Rudin-Osher-Fatemi

Outline

1 Motivation

- Origin and uses of Total Variation
- Denoising
- Tikhonov regularization
- 1-D computation on step edges

2 Total Variation I

- First definition
- Rudin-Osher-Fatemi
- Inpainting/Denoising

3 Total Variation II

- Relaxing the derivative constraints
- Definition in action
- Using the new definition in denoising: Chambolle algorithm

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

Image Simplification

4 Bibliography

5 The End

Total Variation I

Rudin-Osher-Fatemi

ROF Denoising

State the denoising problem as minimizing J(u) under the constraints

$$\int_{\Omega} u \, dx = \int_{\Omega} u_o \, dx, \quad \int_{\Omega} (u - u_0)^2 \, dx = |\Omega| \sigma^2 \quad (|\Omega| = \text{area/volume of } \Omega)$$

Solve via Lagrange multipliers.

- Total Variation I

Rudin-Osher-Fatemi

State the denoising problem as minimizing J(u) under the constraints

$$\int_{\Omega} u \, dx = \int_{\Omega} u_0 \, dx, \quad \int_{\Omega} (u - u_0)^2 \, dx = |\Omega| \sigma^2 \quad (|\Omega| = \text{area/volume of } \Omega)$$

Solve via Lagrange multipliers.

Total Variation I

Rudin-Osher-Fatemi

ROF Denoising

State the denoising problem as minimizing J(u) under the constraints

$$\int_{\Omega} u \, dx = \int_{\Omega} u_0 \, dx, \quad \int_{\Omega} (u - u_0)^2 \, dx = |\Omega| \sigma^2 \quad (|\Omega| = \text{area/volume of } \Omega)$$

Solve via Lagrange multipliers.

- Total Variation I

Rudin-Osher-Fatemi

TV-denoising

Chambolle-Lions: there exists λ such the solution minimizes

$$E_{TV}(u) = \frac{1}{2} \int_{\Omega} (Ku - u_0)^2 \, dx + \lambda \int_{\Omega} |\nabla u| \, dx$$

Euler-Lagrange equation:

$$K^*(Ku - u_0) - \lambda \operatorname{div}\left(rac{
abla u}{|
abla u|}
ight) = 0.$$

The term div $\left(\frac{\nabla u}{|\nabla u|}\right)$ is highly non linear. Problems especially when $|\nabla u| = 0$.

In fact √u/|√u|(x) is the unit normal of the level line of u at x and div (√u/|√u|) is the (mean)curvature of the level line: not defined when the level line is singular or does not exist!

Rudin-Osher-Fatemi

TV-denoising

Chambolle-Lions: there exists λ such the solution minimizes

$$E_{TV}(u) = \frac{1}{2} \int_{\Omega} (Ku - u_0)^2 \, dx + \lambda \int_{\Omega} |\nabla u| \, dx$$

Euler-Lagrange equation:

$$K^*(Ku-u_0)-\lambda \operatorname{div}\left(rac{
abla u}{|
abla u|}
ight)=0.$$

The term div $\left(\frac{\nabla u}{|\nabla u|}\right)$ is highly non linear. Problems especially when $|\nabla u| = 0$.

In fact $\frac{\nabla u}{|\nabla u|}(x)$ is the unit normal of the level line of u at x and div $\left(\frac{\nabla u}{|\nabla u|}\right)$ is the (mean)curvature of the level line: not defined when the level line is singular or does not exist!

Total Variation I

Rudin-Osher-Fatemi

TV-denoising

Chambolle-Lions: there exists λ such the solution minimizes

$$E_{TV}(u) = \frac{1}{2} \int_{\Omega} (Ku - u_0)^2 \, dx + \lambda \int_{\Omega} |\nabla u| \, dx$$

Euler-Lagrange equation:

$$K^*(Ku-u_0)-\lambda \operatorname{div}\left(rac{
abla u}{|
abla u|}
ight)=0.$$

The term div $\left(\frac{\nabla u}{|\nabla u|}\right)$ is highly non linear. Problems especially when $|\nabla u| = 0$.

In fact $\frac{\nabla u}{|\nabla u|}(x)$ is the unit normal of the level line of u at x and div $\left(\frac{\nabla u}{|\nabla u|}\right)$ is the (mean)curvature of the level line: not defined when the level line is singular or does not exist!

Rudin-Osher-Fatemi

TV-denoising

Chambolle-Lions: there exists λ such the solution minimizes

$$E_{TV}(u) = \frac{1}{2} \int_{\Omega} (Ku - u_0)^2 \, dx + \lambda \int_{\Omega} |\nabla u| \, dx$$

Euler-Lagrange equation:

$$K^*(Ku - u_0) - \lambda \operatorname{div}\left(rac{
abla u}{|
abla u|}
ight) = 0.$$

The term div $\left(\frac{\nabla u}{|\nabla u|}\right)$ is highly non linear. Problems especially when $|\nabla u| = 0$.

In fact $\frac{\nabla u}{|\nabla u|}(x)$ is the unit normal of the level line of u at x and div $\left(\frac{\nabla u}{|\nabla u|}\right)$ is the (mean)curvature of the level line: not defined when the level line is singular or does not exist!

Rudin-Osher-Fatemi

TV-denoising

Chambolle-Lions: there exists λ such the solution minimizes

$$E_{TV}(u) = \frac{1}{2} \int_{\Omega} (Ku - u_0)^2 \, dx + \lambda \int_{\Omega} |\nabla u| \, dx$$

Euler-Lagrange equation:

$$\mathcal{K}^*(\mathcal{K}u-u_0)-\lambda \operatorname{div}\left(rac{
abla u}{|
abla u|}
ight)=0.$$

The term div $\left(\frac{\nabla u}{|\nabla u|}\right)$ is highly non linear. Problems especially when $|\nabla u| = 0$.

In fact ^{∇u/}/_{|∇u|}(x) is the unit normal of the level line of u at x and div (^{∇u}/_{|∇u|}) is the (mean)curvature of the level line: not defined when the level line is singular or does not exist!

> ●─ つりの 豆 〈豆〉〈豆〉〈豆〉〈□〉〈□〉

Total Variation I

Rudin-Osher-Fatemi

Acar-Vogel

Replace it by regularized version

$$|\nabla u|_{\beta} = \sqrt{|\nabla u|^2 + \beta}, \quad \beta > 0$$

Acar - Vogel show that

$$\lim_{\beta\to 0} \left(J_{\beta}(u) = \int_{\Omega} |\nabla u|_{\beta} \, dx \right) = J(u).$$

Replace energy by

$$E'(u) = \int_{\Omega} (Ku - u_0)^2 \, dx + \lambda J_{\beta}(u)$$

Euler-Lagrange equation:

$$K^*(Ku - u_0) - \lambda \operatorname{div}\left(\frac{\nabla u}{|\nabla u|_{\beta}}\right) = 0$$

The null denominator problem disappears.

Total Variation I

Rudin-Osher-Fatemi

Acar-Vogel

Replace it by regularized version

$$|\nabla u|_{\beta} = \sqrt{|\nabla u|^2 + \beta}, \quad \beta > 0$$

Acar - Vogel show that

$$\lim_{\beta\to 0}\left(J_{\beta}(u)=\int_{\Omega}|\nabla u|_{\beta}\,dx\right)=J(u).$$

Replace energy by

$$E'(u) = \int_{\Omega} (Ku - u_0)^2 \, dx + \lambda J_{\beta}(u)$$

Euler-Lagrange equation:

$$K^*(Ku - u_0) - \lambda \operatorname{div}\left(\frac{\nabla u}{|\nabla u|_{\beta}}\right) = 0$$

The null denominator problem disappears.

Total Variation I

Rudin-Osher-Fatemi

Acar-Vogel

Replace it by regularized version

$$|\nabla u|_{\beta} = \sqrt{|\nabla u|^2 + \beta}, \quad \beta > 0$$

Acar - Vogel show that

$$\lim_{\beta\to 0}\left(J_{\beta}(u)=\int_{\Omega}|\nabla u|_{\beta}\,dx\right)=J(u).$$

Replace energy by

$$E'(u) = \int_{\Omega} (Ku - u_0)^2 \, dx + \lambda J_{\beta}(u)$$

Euler-Lagrange equation:

$$K^*(Ku - u_0) - \lambda \operatorname{div}\left(\frac{\nabla u}{|\nabla u|_{\beta}}\right) = 0$$

The null denominator problem disappears.

Total Variation I

Rudin-Osher-Fatemi

Acar-Vogel

Replace it by regularized version

$$|\nabla u|_{\beta} = \sqrt{|\nabla u|^2 + \beta}, \quad \beta > 0$$

Acar - Vogel show that

$$\lim_{\beta\to 0}\left(J_{\beta}(u)=\int_{\Omega}|\nabla u|_{\beta}\,dx\right)=J(u).$$

Replace energy by

$$E'(u) = \int_{\Omega} (Ku - u_0)^2 \, dx + \lambda J_{\beta}(u)$$

Euler-Lagrange equation:

$$\mathcal{K}^*(\mathcal{K}u - u_0) - \lambda \operatorname{div}\left(rac{
abla u}{|
abla u|_{eta}}
ight) = 0$$

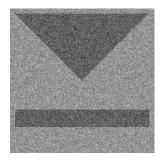
The null denominator problem disappears.

Rudin-Osher-Fatemi

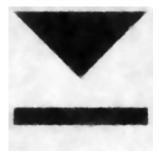
Example

mplementation by finite differences, fixed-point strategy, linearization.

Original



 $\lambda = 1.5, \beta = 10^{-4}$

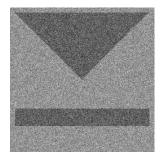


Rudin-Osher-Fatemi

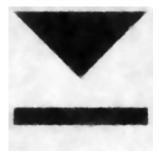
Example

Implementation by finite differences, fixed-point strategy, linearization.

Original



$$\lambda = 1.5, \, \beta = 10^{-4}$$



Total Variation I

L Inpainting/Denoising

Outline

1 Motivation

- Origin and uses of Total Variation
- Denoising
- Tikhonov regularization
- 1-D computation on step edges

2 Total Variation I

- First definition
- Rudin-Osher-Fatemi
- Inpainting/Denoising

3 Total Variation II

- Relaxing the derivative constraints
- Definition in action
- Using the new definition in denoising: Chambolle algorithm

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

Image Simplification

4 Bibliography

5 The End

Filling *u* in the subset $H \subset \Omega$ where data is missing, denoise known data

Inpainting energy (Chan & Shen):

$$E_{ITV}(u) = \frac{1}{2} \int_{\Omega \setminus H} (u - u_0)^2 \, dx + \lambda \int_{\Omega} |\nabla u| \, dx$$

Euler-Lagrange Equation:

$$(u-u_0)\chi-\lambda \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)=0.$$

 $(\chi(x) = 1 \text{ is } x \notin H, 0 \text{ otherwise}).$

Filling *u* in the subset $H \subset \Omega$ where data is missing, denoise known data

Inpainting energy (Chan & Shen):

$$E_{ITV}(u) = \frac{1}{2} \int_{\Omega \setminus H} (u - u_0)^2 \, dx + \lambda \int_{\Omega} |\nabla u| \, dx$$

Euler-Lagrange Equation:

$$(u-u_0)\chi-\lambda \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)=0.$$

 $(\chi(x) = 1 \text{ is } x \notin H, 0 \text{ otherwise}).$

Filling *u* in the subset $H \subset \Omega$ where data is missing, denoise known data

Inpainting energy (Chan & Shen):

$$E_{ITV}(u) = \frac{1}{2} \int_{\Omega \setminus H} (u - u_0)^2 \, dx + \lambda \int_{\Omega} |\nabla u| \, dx$$

Euler-Lagrange Equation:

$$(u-u_0)\chi-\lambda \operatorname{div}\left(\frac{\nabla u}{|\nabla u|}\right)=0.$$

 $(\chi(x) = 1 \text{ is } x \notin H, 0 \text{ otherwise}).$

Filling *u* in the subset $H \subset \Omega$ where data is missing, denoise known data

Inpainting energy (Chan & Shen):

$$E_{ITV}(u) = \frac{1}{2} \int_{\Omega \setminus H} (u - u_0)^2 \, dx + \lambda \int_{\Omega} |\nabla u| \, dx$$

Euler-Lagrange Equation:

$$(u-u_0)\chi-\lambda \operatorname{div}\left(rac{
abla u}{|
abla u|}
ight)=0.$$

 $(\chi(x) = 1 \text{ is } x \notin H, 0 \text{ otherwise}).$

Filling *u* in the subset $H \subset \Omega$ where data is missing, denoise known data

Inpainting energy (Chan & Shen):

$$E_{ITV}(u) = \frac{1}{2} \int_{\Omega \setminus H} (u - u_0)^2 \, dx + \lambda \int_{\Omega} |\nabla u| \, dx$$

Euler-Lagrange Equation:

$$(u-u_0)\chi-\lambda \operatorname{div}\left(rac{
abla u}{|
abla u|}
ight)=0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $(\chi(x) = 1 \text{ is } x \notin H, 0 \text{ otherwise}).$

Degraded

Inpainted

Total Variation I

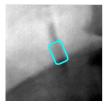
Inpainting/Denoising

Segmention

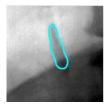
Inpainting - driven segmention (Lauze, Nielsen 2008, IJCV)

Aortic calcifiction

Detection



Segmention



- Total Variation II

Relaxing the derivative constraints

Outline

1 Motivation

- Origin and uses of Total Variation
- Denoising
- Tikhonov regularization
- 1-D computation on step edges

2 Total Variation I

- First definition
- Rudin-Osher-Fatemi
- Inpainting/Denoising

3 Total Variation II

Relaxing the derivative constraints

- Definition in action
- Using the new definition in denoising: Chambolle algorithm

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

Image Simplification

4 Bibliography

5 The End

$$J(u)=\int_{\Omega}|\nabla u|\,dx$$

u must have (weak) derivatives.

But we just saw that the computation is possible for a step-edge u(x) = 0, x < 0, u(x) = a, x > 0:

$$\int_{-1}^{1} |u'(x)| \, dx = |a|$$

$$J(u)=\int_{\Omega}|\nabla u|\,dx$$

u must have (weak) derivatives.

But we just saw that the computation is possible for a step-edge u(x) = 0, x < 0, u(x) = a, x > 0:

$$\int_{-1}^{1} |u'(x)| \, dx = |a|$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$J(u)=\int_{\Omega}|\nabla u|\,dx$$

u must have (weak) derivatives.

But we just saw that the computation is possible for a step-edge u(x) = 0, x < 0, u(x) = a, x > 0:

$$\int_{-1}^{1} |u'(x)| \, dx = |a|$$

$$J(u)=\int_{\Omega}|\nabla u|\,dx$$

u must have (weak) derivatives.

But we just saw that the computation is possible for a step-edge u(x) = 0, x < 0, u(x) = a, x > 0:

$$\int_{-1}^{1} |u'(x)| \, dx = |a|$$

Assume first that ∇u exists.

$$|\nabla u| = \nabla u \cdot \frac{\nabla u}{|\nabla u|}$$

(except when $\nabla u = 0$) and $\frac{\nabla u}{|\nabla u|}$ is the normal to the level lines of u, it has everywhere norm 1.

Let V the set of vector fields v(x) on Ω with $|v(x)| \leq 1$. I claim

$$J(u) = \sup_{v \in V} \int_{\Omega} \nabla u(x) \cdot v(x) \, dx$$

人口 医水黄 医水黄 医水黄 化口

(consequence of Cauchy-Schwarz inequality).

Assume first that ∇u exists.

$$|\nabla u| = \nabla u \cdot \frac{\nabla u}{|\nabla u|}$$

(except when $\nabla u = 0$) and $\frac{\nabla u}{|\nabla u|}$ is the normal to the level lines of u, it has everywhere norm 1.

Let V the set of vector fields v(x) on Ω with $|v(x)| \le 1$. I claim

$$J(u) = \sup_{v \in V} \int_{\Omega} \nabla u(x) \cdot v(x) \, dx$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(consequence of Cauchy-Schwarz inequality).

Assume first that ∇u exists.

$$|\nabla u| = \nabla u \cdot \frac{\nabla u}{|\nabla u|}$$

(except when $\nabla u = 0$) and $\frac{\nabla u}{|\nabla u|}$ is the normal to the level lines of u, it has everywhere norm 1.

Let V the set of vector fields v(x) on Ω with $|v(x)| \leq 1$. I claim

$$J(u) = \sup_{v \in V} \int_{\Omega} \nabla u(x) \cdot v(x) \, dx$$

(consequence of Cauchy-Schwarz inequality).

Restrict to the set W of such v's that are differentiable and vanishing at ∂Ω, the boundary of Ω Then

$$J(u) = \sup_{v \in W} \int_{\Omega} \nabla u(x) \cdot v(x) \, dx$$

But then I can use Divergence theorem: $H \subset D \subset \mathbb{R}^n$, $f : D \to \mathbb{R}$ differentiable function, $g = (g^1, \ldots, g^n) : D \to \mathbb{R}^n$ differentiable vector field and div $g = \sum_{i=1}^n g_{x_i}^i$.

$$\int_{H} \nabla f \cdot g \, dx = -\int_{H} f \operatorname{div} g \, dx + \int_{\partial H} f g \cdot n(s) \, ds$$

with n(s) exterior normal field to ∂H .

Apply it to J(u) above:

$$J(u) = \sup_{v \in W} \left(-\int_{\Omega} u(x) \operatorname{div} v(x) \, dx \right)$$

・ コット (雪) (小田) (コット 日)

- The gradient has disappeared from ul This is the classical definition of total variation.
- Note that when $\nabla u(x) \neq 0$, optimal $v(x) = (\nabla u/|\nabla|u)(x)$ and divv(x) is the mean curvature of the level set of u at x. Geometry is there!

Restrict to the set *W* of such *v*'s that are differentiable and vanishing at $\partial \Omega$, the boundary of Ω Then

$$J(u) = \sup_{v \in W} \int_{\Omega} \nabla u(x) \cdot v(x) \, dx$$

But then I can use Divergence theorem: $H \subset D \subset \mathbb{R}^n$, $f : D \to \mathbb{R}$ differentiable function, $g = (g^1, \ldots, g^n) : D \to \mathbb{R}^n$ differentiable vector field and div $g = \sum_{i=1}^n g_{x_i}^i$,

$$\int_{H} \nabla f \cdot g \, dx = - \int_{H} f \operatorname{div} g \, dx + \int_{\partial H} f g \cdot n(s) \, ds$$

with n(s) exterior normal field to ∂H .

Apply it to J(u) above:

$$J(u) = \sup_{v \in W} \left(-\int_{\Omega} u(x) \operatorname{div} v(x) \, dx \right)$$

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

- The gradient has disappeared from *u*! This is the classical definition of total variation.
- Note that when $\nabla u(x) \neq 0$, optimal $v(x) = (\nabla u/|\nabla|u)(x)$ and divv(x) is the mean curvature of the level set of u at x. Geometry is there!

Restrict to the set *W* of such *v*'s that are differentiable and vanishing at $\partial \Omega$, the boundary of Ω Then

$$J(u) = \sup_{v \in W} \int_{\Omega} \nabla u(x) \cdot v(x) \, dx$$

But then I can use Divergence theorem: H ⊂ D ⊂ ℝⁿ, f : D → ℝ differentiable function, g = (g¹,...,gⁿ) : D → ℝⁿ differentiable vector field and div g = ∑_{i=1}ⁿ gⁱ_{x_i},

$$\int_{H} \nabla f \cdot g \, dx = - \int_{H} f \operatorname{div} g \, dx + \int_{\partial H} f g \cdot n(s) \, ds$$

with n(s) exterior normal field to ∂H .

Apply it to J(u) above:

$$J(u) = \sup_{v \in W} \left(-\int_{\Omega} u(x) \operatorname{div} v(x) \, dx \right)$$

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

- The gradient has disappeared from *u*! This is the classical definition of total variation.
- Note that when $\nabla u(x) \neq 0$, optimal $v(x) = (\nabla u/|\nabla|u)(x)$ and divv(x) is the mean curvature of the level set of u at x. Geometry is there!

Restrict to the set *W* of such *v*'s that are differentiable and vanishing at $\partial \Omega$, the boundary of Ω Then

$$J(u) = \sup_{v \in W} \int_{\Omega} \nabla u(x) \cdot v(x) \, dx$$

But then I can use Divergence theorem: H ⊂ D ⊂ ℝⁿ, f : D → ℝ differentiable function, g = (g¹,...,gⁿ) : D → ℝⁿ differentiable vector field and div g = ∑_{i=1}ⁿ gⁱ_{x_i},

$$\int_{H} \nabla f \cdot g \, dx = - \int_{H} f \operatorname{div} g \, dx + \int_{\partial H} f g \cdot n(s) \, ds$$

with n(s) exterior normal field to ∂H .

Apply it to J(u) above:

$$J(u) = \sup_{v \in W} \left(-\int_{\Omega} u(x) \operatorname{div} v(x) \, dx \right)$$

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

- The gradient has disappeared from *u*! This is the classical definition of total variation.
- Note that when $\nabla u(x) \neq 0$, optimal $v(x) = (\nabla u/|\nabla|u)(x)$ and divv(x) is the mean curvature of the level set of u at x. Geometry is there!

Restrict to the set *W* of such *v*'s that are differentiable and vanishing at $\partial \Omega$, the boundary of Ω Then

$$J(u) = \sup_{v \in W} \int_{\Omega} \nabla u(x) \cdot v(x) \, dx$$

But then I can use Divergence theorem: H ⊂ D ⊂ ℝⁿ, f : D → ℝ differentiable function, g = (g¹,...,gⁿ) : D → ℝⁿ differentiable vector field and div g = ∑_{i=1}ⁿ gⁱ_{x_i},

$$\int_{H} \nabla f \cdot g \, dx = - \int_{H} f \operatorname{div} g \, dx + \int_{\partial H} f g \cdot n(s) \, ds$$

with n(s) exterior normal field to ∂H .

Apply it to J(u) above:

$$J(u) = \sup_{v \in W} \left(-\int_{\Omega} u(x) \operatorname{div} v(x) \, dx \right)$$

- The gradient has disappeared from *u*! This is the classical definition of total variation.
- Note that when $\nabla u(x) \neq 0$, optimal $v(x) = (\nabla u/|\nabla|u)(x)$ and divv(x) is the mean curvature of the level set of u at x. Geometry is there!

・ロット 金田 マス 日マ トロマ

Restrict to the set *W* of such *v*'s that are differentiable and vanishing at $\partial \Omega$, the boundary of Ω Then

$$J(u) = \sup_{v \in W} \int_{\Omega} \nabla u(x) \cdot v(x) \, dx$$

But then I can use Divergence theorem: H ⊂ D ⊂ ℝⁿ, f : D → ℝ differentiable function, g = (g¹,...,gⁿ) : D → ℝⁿ differentiable vector field and div g = ∑_{i=1}ⁿ gⁱ_{x_i},

$$\int_{H} \nabla f \cdot g \, dx = - \int_{H} f \operatorname{div} g \, dx + \int_{\partial H} f g \cdot n(s) \, ds$$

with n(s) exterior normal field to ∂H .

Apply it to J(u) above:

$$J(u) = \sup_{v \in W} \left(-\int_{\Omega} u(x) \operatorname{div} v(x) \, dx \right)$$

- The gradient has disappeared from *u*! This is the classical definition of total variation.
- Note that when $\nabla u(x) \neq 0$, optimal $v(x) = (\nabla u/|\nabla|u)(x)$ and divv(x) is the mean curvature of the level set of u at x. Geometry is there!

- Total Variation II

Definition in action

Outline

1 Motivation

- Origin and uses of Total Variation
- Denoising
- Tikhonov regularization
- 1-D computation on step edges
- 2 Total Variation
 - First definition
 - Rudin-Osher-Fatemi
 - Inpainting/Denoising

3 Total Variation II

Relaxing the derivative constraints

Definition in action

Using the new definition in denoising: Chambolle algorithm

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

Image Simplification

4 Bibliography

5 The End

Definition in action

Step-edge

- *u* the step-edge function defined in previous slides. We compute J(u) with the new definition.
- here $W = \{\phi : [-1,1] \rightarrow \mathbb{R} \text{ differentiable}, \phi(-1) = \phi(1) = 0, |\phi(x)| \le 1\},\$

$$J(u) = \sup_{\phi \in W} \int_{-1}^{1} u(x)\phi'(x) \, dx$$

we compute

$$\int_{-1}^{1} u(x)\phi'(x) \, dx = a \int_{0}^{1} \phi'(x) \, dx$$
$$= a(\phi(1) - \phi(0))$$
$$= -a\phi(0)$$

(日) (圖) (E) (E) (E)

Definition in action

Step-edge

• *u* the step-edge function defined in previous slides. We compute J(u) with the new definition.

• here $W = \{\phi : [-1, 1] \rightarrow \mathbb{R} \text{ differentiable}, \phi(-1) = \phi(1) = 0, |\phi(x)| \le 1\},\$

$$J(u) = \sup_{\phi \in W} \int_{-1}^{1} u(x)\phi'(x) \, dx$$

we compute

$$\int_{-1}^{1} u(x)\phi'(x) \, dx = a \int_{0}^{1} \phi'(x) \, dx$$
$$= a(\phi(1) - \phi(0))$$
$$= -a\phi(0)$$

(日)

Definition in action

Step-edge

- *u* the step-edge function defined in previous slides. We compute J(u) with the new definition.
- here $W = \{\phi : [-1, 1] \rightarrow \mathbb{R} \text{ differentiable}, \phi(-1) = \phi(1) = 0, |\phi(x)| \le 1\},\$

$$J(u) = \sup_{\phi \in W} \int_{-1}^{1} u(x)\phi'(x) \, dx$$

we compute

$$\int_{-1}^{1} u(x)\phi'(x) \, dx = a \int_{0}^{1} \phi'(x) \, dx$$
$$= a(\phi(1) - \phi(0))$$
$$= -a\phi(0)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition in action

Step-edge

- *u* the step-edge function defined in previous slides. We compute J(u) with the new definition.
- here $W = \{\phi : [-1, 1] \rightarrow \mathbb{R} \text{ differentiable}, \phi(-1) = \phi(1) = 0, |\phi(x)| \le 1\},\$

$$J(u) = \sup_{\phi \in W} \int_{-1}^{1} u(x)\phi'(x) \, dx$$

we compute

$$\int_{-1}^{1} u(x)\phi'(x) \, dx = a \int_{0}^{1} \phi'(x) \, dx$$
$$= a(\phi(1) - \phi(0))$$
$$= -a\phi(0)$$

Definition in action

Step-edge

- *u* the step-edge function defined in previous slides. We compute J(u) with the new definition.
- here $W = \{\phi : [-1, 1] \rightarrow \mathbb{R} \text{ differentiable}, \phi(-1) = \phi(1) = 0, |\phi(x)| \le 1\},\$

$$J(u) = \sup_{\phi \in W} \int_{-1}^{1} u(x)\phi'(x) \, dx$$

we compute

$$\int_{-1}^{1} u(x)\phi'(x) \, dx = a \int_{0}^{1} \phi'(x) \, dx$$
$$= a(\phi(1) - \phi(0))$$
$$= -a\phi(0)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition in action

Step-edge

- *u* the step-edge function defined in previous slides. We compute J(u) with the new definition.
- here $W = \{\phi : [-1, 1] \rightarrow \mathbb{R} \text{ differentiable}, \phi(-1) = \phi(1) = 0, |\phi(x)| \le 1\},\$

$$J(u) = \sup_{\phi \in W} \int_{-1}^{1} u(x)\phi'(x) \, dx$$

we compute

$$\int_{-1}^{1} u(x)\phi'(x) \, dx = a \int_{0}^{1} \phi'(x) \, dx$$
$$= a(\phi(1) - \phi(0))$$
$$= -a\phi(0)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition in action

2D example

B open set with regular boundary curve *partialB*, Ω large enough to contain *B* and χ_B the characteristic function of *B*

$$\chi_B(x) = \begin{cases} 1 & x \in B \\ 0 & x \notin B \end{cases}$$

For $v \in W$, by the divergence theorem on *B* and its boundary ∂B

$$\int_{\Omega} \chi(x) \operatorname{div} v(x) \, dx = \int_{B} \operatorname{div} v(x) \, dx$$
$$= -\int_{\partial B} v(s) \cdot n(s) \, ds$$

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

(n(s)) is the exterior normal to ∂B

Definition in action

2D example

B open set with regular boundary curve *partialB*, Ω large enough to contain *B* and χ_B the characteristic function of *B*

$$\chi_B(x) = \begin{cases} 1 & x \in B \\ 0 & x \notin B \end{cases}$$

For $v \in W$, by the divergence theorem on *B* and its boundary ∂B

$$\int_{\Omega} \chi(x) \operatorname{div} v(x) \, dx = \int_{B} \operatorname{div} v(x) \, dx$$
$$= -\int_{\partial B} v(s) \cdot n(s) \, ds$$

ヘロン 人間 とくほど 人ほど 一日

(n(s) is the exterior normal to ∂B)

Definition in action

2D example

B open set with regular boundary curve *partialB*, Ω large enough to contain *B* and χ_B the characteristic function of *B*

$$\chi_B(x) = \begin{cases} 1 & x \in B \\ 0 & x \notin B \end{cases}$$

For $v \in W$, by the divergence theorem on *B* and its boundary ∂B

$$\int_{\Omega} \chi(x) \operatorname{div} v(x) \, dx = \int_{B} \operatorname{div} v(x) \, dx$$
$$= -\int_{\partial B} v(s) \cdot n(s) \, ds$$

(n(s) is the exterior normal to ∂B)

Definition in action

2D example

B open set with regular boundary curve *partialB*, Ω large enough to contain *B* and χ_B the characteristic function of *B*

$$\chi_B(x) = \begin{cases} 1 & x \in B \\ 0 & x \notin B \end{cases}$$

For $v \in W$, by the divergence theorem on *B* and its boundary ∂B

$$\int_{\Omega} \chi(x) \operatorname{div} v(x) \, dx = \int_{B} \operatorname{div} v(x) \, dx$$
$$= -\int_{\partial B} v(s) \cdot n(s) \, ds$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(n(s) is the exterior normal to ∂B)

Definition in action

Sets of finite perimeter

Let $H \subset \Omega$. If its characteristic function χ_H satisfies

 $J(\chi_H) < \infty$

H is called set of finite perimeter (and $Per_{\Omega}(H) := J(\chi_H)$ is its perimeter)

This is used for instance in the Chan and Vese algorithm.

If $J(u) < \infty$ and $H_t = \{x \in \Omega, u(x) < t\}$ the lower *t*-level set of *u*,

$$J(u) = \int_{-\infty}^{+\infty} J(\chi_{H_t}) dt$$
 Coarea formula

(日) (圖) (E) (E) (E)

Definition in action

Sets of finite perimeter

Let $H \subset \Omega$. If its characteristic function χ_H satisfies

 $J(\chi_H) < \infty$

H is called set of finite perimeter (and $Per_{\Omega}(H) := J(\chi_H)$ is its perimeter)

This is used for instance in the Chan and Vese algorithm.

If $J(u) < \infty$ and $H_t = \{x \in \Omega, u(x) < t\}$ the lower *t*-level set of *u*,

$$J(u) = \int_{-\infty}^{+\infty} J(\chi_{H_t}) dt$$
 Coarea formula

Definition in action

Sets of finite perimeter

Let $H \subset \Omega$. If its characteristic function χ_H satisfies

 $J(\chi_H) < \infty$

H is called set of finite perimeter (and $Per_{\Omega}(H) := J(\chi_H)$ is its perimeter)

This is used for instance in the Chan and Vese algorithm.

If $J(u) < \infty$ and $H_t = \{x \in \Omega, u(x) < t\}$ the lower *t*-level set of *u*,

$$J(u) = \int_{-\infty}^{+\infty} J(\chi_{H_t}) \, dt$$
 Coarea formula

- Total Variation II

Using the new definition in denoising: Chambolle algorithm

Outline

1 Motivation

- Origin and uses of Total Variation
- Denoising
- Tikhonov regularization
- 1-D computation on step edges

2 Total Variation I

- First definition
- Rudin-Osher-Fatemi
- Inpainting/Denoising

3 Total Variation II

- Relaxing the derivative constraints
- Definition in action
- Using the new definition in denoising: Chambolle algorithm

・ コット (雪) (小田) (コット 日)

Image Simplification

4 Bibliography

5 The End

- Total Variation II
 - Using the new definition in denoising: Chambolle algorithm

Chambolle algorithm

■ Let $K \in L^2(\Omega)$ the closure of the set {div $v, v \in C_0^1(\Omega)^2$, $|v(x)| \le 1$ } i.e. the image of W by div.

Then

$$J(u) = \sup_{\phi \in K} \left(\int_{\Omega} u \, \phi \, dx = \langle u, \phi \rangle_{L^{2}(\Omega)} \right)$$

Solution of the denoising problem arg.min $\int_{\Omega} (u - u_0)^2 + \lambda J(u)$ given by

$$u = u_0 - \pi_{\lambda K}(u_0)$$

with $\pi_{\lambda K}$ orthogonal projection onto the convex set λK (Chambolle).

Needs a bit of convex analysis to show that: subdifferentials and subgradients, Fenchel transforms, indicators/characteristic functions and elementary results on them

Using the new definition in denoising: Chambolle algorithm

Chambolle algorithm

Let $K \in L^2(\Omega)$ the closure of the set {div $v, v \in C_0^1(\Omega)^2, |v(x)| \le 1$ } i.e. the image of W by div.

Then

$$J(u) = \sup_{\phi \in K} \left(\int_{\Omega} u \, \phi \, dx = \langle u, \phi \rangle_{L^{2}(\Omega)} \right)$$

Solution of the denoising problem arg.min $\int_{\Omega} (u - u_0)^2 + \lambda J(u)$ given by

$$u = u_0 - \pi_{\lambda K}(u_0)$$

with $\pi_{\lambda K}$ orthogonal projection onto the convex set λK (Chambolle).

Needs a bit of convex analysis to show that: subdifferentials and subgradients, Fenchel transforms, indicators/characteristic functions and elementary results on them

Using the new definition in denoising: Chambolle algorithm

Chambolle algorithm

Let $K \in L^2(\Omega)$ the closure of the set {div $v, v \in C_0^1(\Omega)^2, |v(x)| \le 1$ } i.e. the image of W by div.

Then

$$J(u) = \sup_{\phi \in K} \left(\int_{\Omega} u \, \phi \, dx = \langle u, \phi \rangle_{L^{2}(\Omega)} \right)$$

Solution of the denoising problem arg.min $\int_{\Omega} (u - u_0)^2 + \lambda J(u)$ given by

$$u = u_0 - \pi_{\lambda K}(u_0)$$

with $\pi_{\lambda K}$ orthogonal projection onto the convex set λK (Chambolle).

Needs a bit of convex analysis to show that: subdifferentials and subgradients, Fenchel transforms, indicators/characteristic functions and elementary results on them

Using the new definition in denoising: Chambolle algorithm

Chambolle algorithm

Let $K \in L^2(\Omega)$ the closure of the set {div $v, v \in C_0^1(\Omega)^2, |v(x)| \le 1$ } i.e. the image of W by div.

Then

$$J(u) = \sup_{\phi \in K} \left(\int_{\Omega} u \, \phi \, dx = \langle u, \phi \rangle_{L^{2}(\Omega)} \right)$$

Solution of the denoising problem arg.min $\int_{\Omega} (u - u_0)^2 + \lambda J(u)$ given by

$$u=u_0-\pi_{\lambda K}(u_0)$$

with $\pi_{\lambda K}$ orthogonal projection onto the convex set λK (Chambolle).

Needs a bit of convex analysis to show that: subdifferentials and subgradients, Fenchel transforms, indicators/characteristic functions and elementary results on them

Using the new definition in denoising: Chambolle algorithm

Chambolle algorithm

Let $K \in L^2(\Omega)$ the closure of the set {div $v, v \in C_0^1(\Omega)^2, |v(x)| \le 1$ } i.e. the image of W by div.

Then

$$J(u) = \sup_{\phi \in K} \left(\int_{\Omega} u \, \phi \, dx = \langle u, \phi \rangle_{L^{2}(\Omega)} \right)$$

Solution of the denoising problem arg.min $\int_{\Omega} (u - u_0)^2 + \lambda J(u)$ given by

$$u = u_0 - \pi_{\lambda K}(u_0)$$

with $\pi_{\lambda K}$ orthogonal projection onto the convex set λK (Chambolle).

Needs a bit of convex analysis to show that: subdifferentials and subgradients, Fenchel transforms, indicators/characteristic functions and elementary results on them

> •---うの(や 三 イビト イビト (引) (コト

Using the new definition in denoising: Chambolle algorithm

Chambolle algorithm

Let $K \in L^2(\Omega)$ the closure of the set {div $v, v \in C_0^1(\Omega)^2, |v(x)| \le 1$ } i.e. the image of W by div.

Then

$$J(u) = \sup_{\phi \in K} \left(\int_{\Omega} u \, \phi \, dx = \langle u, \phi \rangle_{L^{2}(\Omega)} \right)$$

Solution of the denoising problem arg.min $\int_{\Omega} (u - u_0)^2 + \lambda J(u)$ given by

$$u = u_0 - \pi_{\lambda K}(u_0)$$

with $\pi_{\lambda K}$ orthogonal projection onto the convex set λK (Chambolle).

Needs a bit of convex analysis to show that: subdifferentials and subgradients, Fenchel transforms, indicators/characteristic functions and elementary results on them

> •---うの(や 三 イビト イビト (引) (コト

Total Variation II

Using the new definition in denoising: Chambolle algorithm

Fenchel Transform

X Hilbert space, $f: X \to \mathbb{R}$ convex, proper. Fenchel transform of F:

$$F^*(v) = \sup_{u \in X} (\langle u, v \rangle_X - F(u))$$

Geometric meaning: take u^* such that $F^*(u^*) < +\infty$: the affine function

$$a(u) = \langle u, u^* \rangle - F^*(u^*)$$

is tangent to F and $a(0) = -F^*(u^*)$.

L Total Variation II

Using the new definition in denoising: Chambolle algorithm

Fenchel Transform

■ X Hilbert space, $f : X \to \mathbb{R}$ convex, proper. Fenchel transform of F:

$$F^*(v) = \sup_{u \in X} (\langle u, v \rangle_X - F(u))$$

Geometric meaning: take u^* such that $F^*(u^*) < +\infty$: the affine function

$$a(u) = \langle u, u^* \rangle - F^*(u^*)$$

is tangent to F and $a(0) = -F^*(u^*)$.

L Total Variation II

Using the new definition in denoising: Chambolle algorithm

Fenchel Transform

X Hilbert space, $f : X \to \mathbb{R}$ convex, proper. Fenchel transform of *F*:

$$F^*(v) = \sup_{u \in X} \left(\langle u, v \rangle_X - F(u) \right)$$

Geometric meaning: take u^* such that $F^*(u^*) < +\infty$: the affine function

$$a(u) = \langle u, u^* \rangle - F^*(u^*)$$

is tangent to F and $a(0) = -F^*(u^*)$.

Total Variation II

Using the new definition in denoising: Chambolle algorithm

Fenchel transform

Interesting properties:

Convex

- $x \to 0$ is the transform of F and $\lambda > 0$, then the transform of $\mu \to \lambda F(\lambda^{-1}(\mu))$ is $\lambda \mu$.
- is if F(t) considered as $f(t, t) = \lambda F(t)$ when F'(t) only take values 0 and t cores the integration (reference) in the $F' = \lambda F(t) \geq 0$.
- w in that case, the set where $P^*=0$ is closed convex set of $X,P^*=\delta_D$ by inclusion of Ω

$$\delta_{\mathcal{C}}(\mathbf{x}) = \begin{cases} 0 & , \mathbf{x} \in \mathcal{C} \\ +\infty & , \mathbf{x} \notin \mathcal{C} \end{cases}$$

In For $x \in \mathbb{R} \to [x], C = [-1, 1]$ In For J(y), C = K:

Using the new definition in denoising: Chambolle algorithm

Fenchel transform

Interesting properties:

- Convex
- if Φ is the transform of *F* and $\lambda > 0$, then the transform of $u \mapsto \lambda F(\lambda^{-1}(u) \text{ is } \lambda \Phi$.
- if F 1-homogeneous, i.e. $F(\lambda u) = \lambda F(u)$ then $F^*(u)$ only take values 0 and $+\infty$ as the property above implies $F^* = \lambda F^*$, $\lambda > 0$.
- In that case, the set where $F^* = 0$ is a closed convex set of X, $F^* = \delta_C$, the indicator function of C,

$$\delta_C(x) = \begin{cases} 0 & , x \in C \\ +\infty & , x \notin C \end{cases}$$

(日)

Using the new definition in denoising: Chambolle algorithm

Fenchel transform

Interesting properties:

- Convex
- if Φ is the transform of *F* and $\lambda > 0$, then the transform of $u \mapsto \lambda F(\lambda^{-1}(u) \text{ is } \lambda \Phi$.
- if F 1-homogeneous, i.e. $F(\lambda u) = \lambda F(u)$ then $F^*(u)$ only take values 0 and $+\infty$ as the property above implies $F^* = \lambda F^*$, $\lambda > 0$.
- In that case, the set where $F^* = 0$ is a closed convex set of X, $F^* = \delta_C$, the indicator function of C,

$$\delta_C(x) = \begin{cases} 0 & , x \in C \\ +\infty & , x \notin C \end{cases}$$

(日)

Using the new definition in denoising: Chambolle algorithm

Fenchel transform

Interesting properties:

- Convex
- if Φ is the transform of F and $\lambda > 0$, then the transform of $u \mapsto \lambda F(\lambda^{-1}(u) \text{ is } \lambda \Phi$.
- if F 1-homogeneous, i.e. F(λu) = λF(u) then F^{*}(u) only take values 0 and +∞ as the property above implies F^{*} = λF^{*}, λ > 0.
- In that case, the set where $F^* = 0$ is a closed convex set of X, $F^* = \delta_C$, the indicator function of C,

$$\delta_C(x) = \begin{cases} 0 & , x \in C \\ +\infty & , x \notin C \end{cases}$$

(日)

Using the new definition in denoising: Chambolle algorithm

Fenchel transform

Interesting properties:

- Convex
- if Φ is the transform of F and $\lambda > 0$, then the transform of $u \mapsto \lambda F(\lambda^{-1}(u) \text{ is } \lambda \Phi$.
- if F 1-homogeneous, i.e. F(λu) = λF(u) then F^{*}(u) only take values 0 and +∞ as the property above implies F^{*} = λF^{*}, λ > 0.
- In that case, the set where F* = 0 i a closed convex set of X, F* = δ_C, the indicator function of C,

$$\delta_C(x) = \begin{cases} 0 & , x \in C \\ +\infty & , x \notin C \end{cases}$$

(日)

Using the new definition in denoising: Chambolle algorithm

Fenchel transform

Interesting properties:

- Convex
- if Φ is the transform of F and $\lambda > 0$, then the transform of $u \mapsto \lambda F(\lambda^{-1}(u) \text{ is } \lambda \Phi$.
- if F 1-homogeneous, i.e. F(λu) = λF(u) then F^{*}(u) only take values 0 and +∞ as the property above implies F^{*} = λF^{*}, λ > 0.
- In that case, the set where F^{*} = 0 i a closed convex set of X, F^{*} = δ_C, the indicator function of C,

$$\delta_C(x) = \begin{cases} 0 & , x \in C \\ +\infty & , x \notin C \end{cases}$$

(日)

Using the new definition in denoising: Chambolle algorithm

Fenchel transform

Interesting properties:

- Convex
- if Φ is the transform of F and $\lambda > 0$, then the transform of $u \mapsto \lambda F(\lambda^{-1}(u) \text{ is } \lambda \Phi$.
- if F 1-homogeneous, i.e. F(λu) = λF(u) then F^{*}(u) only take values 0 and +∞ as the property above implies F^{*} = λF^{*}, λ > 0.
- In that case, the set where F^{*} = 0 i a closed convex set of X, F^{*} = δ_C, the indicator function of C,

$$\delta_{\mathcal{C}}(x) = \begin{cases} 0 & , x \in \mathcal{C} \\ +\infty & , x \notin \mathcal{C} \end{cases}$$

(日)

Using the new definition in denoising: Chambolle algorithm

Fenchel transform

Interesting properties:

- Convex
- if Φ is the transform of F and $\lambda > 0$, then the transform of $u \mapsto \lambda F(\lambda^{-1}(u) \text{ is } \lambda \Phi$.
- if F 1-homogeneous, i.e. F(λu) = λF(u) then F^{*}(u) only take values 0 and +∞ as the property above implies F^{*} = λF^{*}, λ > 0.
- In that case, the set where F^{*} = 0 i a closed convex set of X, F^{*} = δ_C, the indicator function of C,

$$\delta_{\mathcal{C}}(x) = \begin{cases} 0 & , x \in \mathcal{C} \\ +\infty & , x \notin \mathcal{C} \end{cases}$$

- Total Variation II

Using the new definition in denoising: Chambolle algorithm

Subdifferentials

- subdifferential of *F* at *u*: $\partial F(u) = \{v \in X, F(w) F(u) \ge \langle w u, v \rangle, \forall w \in X\}$. $v \in \partial F(u)$ is a subgradient of *F* at *u*.
- Three fundamental (and easy) properties:
 - $F = 0 \in \partial F(v)$ iff v global minimizer of F
 - $u^* \in \partial F(u) \Leftrightarrow F(u) + F^*(u^*) = (u, u^*).$
 - Duality: $u^* \in \partial F(u) \Leftrightarrow u \in \partial F^*(u)$.
- The duality above allows to transform optimization of homogeneous functions into domain constraints!

- Total Variation II

Using the new definition in denoising: Chambolle algorithm

Subdifferentials

■ subdifferential of *F* at *u*: $\partial F(u) = \{v \in X, F(w) - F(u) \ge \langle w - u, v \rangle, \forall w \in X\}$. $v \in \partial F(u)$ is a subgradient of *F* at *u*.

Three fundamental (and easy) properties:

- $0 \in \partial F(u)$ iff *u* global minimizer of *F*
- $\blacksquare u^* \in \partial F(u) \Leftrightarrow F(u) + F^*(u^*) = \langle u, u^* \rangle$
- Duality: $u^* \in \partial F(u) \Leftrightarrow u \in \partial F^*(u)$

The duality above allows to transform optimization of homogeneous functions into domain constraints!

- Total Variation II

Using the new definition in denoising: Chambolle algorithm

Subdifferentials

- subdifferential of *F* at *u*: $\partial F(u) = \{v \in X, F(w) F(u) \ge \langle w u, v \rangle, \forall w \in X\}$. $v \in \partial F(u)$ is a subgradient of *F* at *u*.
- Three fundamental (and easy) properties:
 - $0 \in \partial F(u)$ iff *u* global minimizer of *F*
 - $\blacksquare u^* \in \partial F(u) \Leftrightarrow F(u) + F^*(u^*) = \langle u, u^* \rangle$
 - Duality: $u^* \in \partial F(u) \Leftrightarrow u \in \partial F^*(u)$
- The duality above allows to transform optimization of homogeneous functions into domain constraints!

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Total Variation II

Using the new definition in denoising: Chambolle algorithm

Subdifferentials

■ subdifferential of *F* at *u*: $\partial F(u) = \{v \in X, F(w) - F(u) \ge \langle w - u, v \rangle, \forall w \in X\}$. $v \in \partial F(u)$ is a subgradient of *F* at *u*.

- Three fundamental (and easy) properties:
 - $0 \in \partial F(u)$ iff u global minimizer of F
 - $\blacksquare u^* \in \partial F(u) \Leftrightarrow F(u) + F^*(u^*) = \langle u, u^* \rangle$
 - Duality: $u^* \in \partial F(u) \Leftrightarrow u \in \partial F^*(u)$

The duality above allows to transform optimization of homogeneous functions into domain constraints!

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Total Variation II

Using the new definition in denoising: Chambolle algorithm

Subdifferentials

- subdifferential of *F* at *u*: $\partial F(u) = \{v \in X, F(w) F(u) \ge \langle w u, v \rangle, \forall w \in X\}$. $v \in \partial F(u)$ is a subgradient of *F* at *u*.
- Three fundamental (and easy) properties:
 - $0 \in \partial F(u)$ iff *u* global minimizer of *F*
 - $\blacksquare u^* \in \partial F(u) \Leftrightarrow F(u) + F^*(u^*) = \langle u, u^* \rangle$
 - Duality: $u^* \in \partial F(u) \Leftrightarrow u \in \partial F^*(u)$

The duality above allows to transform optimization of homogeneous functions into domain constraints!

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Total Variation II

Using the new definition in denoising: Chambolle algorithm

Subdifferentials

- subdifferential of *F* at *u*: $\partial F(u) = \{v \in X, F(w) F(u) \ge \langle w u, v \rangle, \forall w \in X\}$. $v \in \partial F(u)$ is a subgradient of *F* at *u*.
- Three fundamental (and easy) properties:
 - $0 \in \partial F(u)$ iff *u* global minimizer of *F*
 - $\blacksquare u^* \in \partial F(u) \Leftrightarrow F(u) + F^*(u^*) = \langle u, u^* \rangle$
 - Duality: $u^* \in \partial F(u) \Leftrightarrow u \in \partial F^*(u)$

The duality above allows to transform optimization of homogeneous functions into domain constraints!

L Total Variation II

Using the new definition in denoising: Chambolle algorithm

Subdifferentials

- subdifferential of *F* at *u*: $\partial F(u) = \{v \in X, F(w) F(u) \ge \langle w u, v \rangle, \forall w \in X\}$. $v \in \partial F(u)$ is a subgradient of *F* at *u*.
- Three fundamental (and easy) properties:
 - $0 \in \partial F(u)$ iff u global minimizer of F
 - $\blacksquare u^* \in \partial F(u) \Leftrightarrow F(u) + F^*(u^*) = \langle u, u^* \rangle$
 - Duality: $u^* \in \partial F(u) \Leftrightarrow u \in \partial F^*(u)$
- The duality above allows to transform optimization of homogeneous functions into domain constraints!

(日)

L Total Variation II

Using the new definition in denoising: Chambolle algorithm

TV-denoising

To minimize:

$$\frac{1}{2}\|u-u_0\|_{L^2(\Omega}^2+\lambda J(u)$$

optimality condition:

$$0 \in u - u_0 + \lambda \partial J(u) \Leftrightarrow \frac{u_0 - u}{\lambda} \in \partial J(u)$$

Duality

$$\frac{u_0}{\lambda} \in \frac{u_0 - u}{\lambda} + \frac{1}{\lambda} \partial J^*(\frac{u_0 - u}{\lambda})$$

Set $w = \frac{u_0 - u}{\lambda}$: *w* satisfies

$$0 \in w - \frac{u_0}{\lambda} + \frac{1}{\lambda} \partial J^*(w)$$

This is the subdifferential of the convex function

$$\frac{1}{2}\|w - u_0/\lambda\|^2 + \frac{1}{\lambda}J^*(w)$$

< (The second se	 ■ 	 , <u> </u>	200

L Total Variation II

Using the new definition in denoising: Chambolle algorithm

TV-denoising

To minimize:

$$\frac{1}{2}\|u-u_0\|_{L^2(\Omega}^2+\lambda J(u)$$

optimality condition:

$$0 \in u - u_0 + \lambda \partial J(u) \Leftrightarrow \frac{u_0 - u}{\lambda} \in \partial J(u)$$

Duality

$$\frac{u_0}{\lambda} \in \frac{u_0 - u}{\lambda} + \frac{1}{\lambda} \partial J^*(\frac{u_0 - u}{\lambda})$$

Set $w = \frac{u_0 - u}{\lambda}$: *w* satisfies

$$0 \in w - \frac{u_0}{\lambda} + \frac{1}{\lambda} \partial J^*(w)$$

This is the subdifferential of the convex function

$$\frac{1}{2}\|w - u_0/\lambda\|^2 + \frac{1}{\lambda}J^*(w)$$

L Total Variation II

Using the new definition in denoising: Chambolle algorithm

TV-denoising

To minimize:

$$\frac{1}{2}\|u-u_0\|_{L^2(\Omega}^2+\lambda J(u)$$

optimality condition:

$$0 \in u - u_0 + \lambda \partial J(u) \Leftrightarrow \frac{u_0 - u}{\lambda} \in \partial J(u)$$

Duality

$$\frac{u_0}{\lambda} \in \frac{u_0 - u}{\lambda} + \frac{1}{\lambda} \partial J^*(\frac{u_0 - u}{\lambda})$$

• Set $w = \frac{u_0 - u}{\lambda}$: *w* satisfies

$$0 \in w - \frac{u_0}{\lambda} + \frac{1}{\lambda} \partial J^*(w)$$

This is the subdifferential of the convex function

$$\frac{1}{2}\|w - u_0/\lambda\|^2 + \frac{1}{\lambda}J^*(w)$$

									•
< D	Þ	•	÷.	Þ	•	æ	Þ	æ	596

L Total Variation II

Using the new definition in denoising: Chambolle algorithm

TV-denoising

To minimize:

$$\frac{1}{2}\|u-u_0\|^2_{L^2(\Omega}+\lambda J(u)$$

optimality condition:

$$0 \in u - u_0 + \lambda \partial J(u) \Leftrightarrow \frac{u_0 - u}{\lambda} \in \partial J(u)$$

Duality

$$rac{u_0}{\lambda}\in rac{u_0-u}{\lambda}+rac{1}{\lambda}\partial J^*(rac{u_0-u}{\lambda})$$

Set $w = \frac{u_0 - u}{\lambda}$: *w* satisfies

$$0 \in w - rac{u_0}{\lambda} + rac{1}{\lambda} \partial J^*(w)$$

This is the subdifferential of the convex function

$$\frac{1}{2}\|w - u_0/\lambda\|^2 + \frac{1}{\lambda}J^*(w)$$

L Total Variation II

Using the new definition in denoising: Chambolle algorithm

TV-denoising

To minimize:

$$\frac{1}{2}\|u-u_0\|^2_{L^2(\Omega}+\lambda J(u)$$

optimality condition:

$$0 \in u - u_0 + \lambda \partial J(u) \Leftrightarrow \frac{u_0 - u}{\lambda} \in \partial J(u)$$

Duality

$$rac{u_0}{\lambda}\in rac{u_0-u}{\lambda}+rac{1}{\lambda}\partial J^*(rac{u_0-u}{\lambda})$$

Set $w = \frac{u_0 - u}{\lambda}$: *w* satisfies

$$0 \in w - rac{u_0}{\lambda} + rac{1}{\lambda} \partial J^*(w)$$

This is the subdifferential of the convex function

$$\frac{1}{2}\|w-u_0/\lambda\|^2+\frac{1}{\lambda}J^*(w)$$

But $J^*(w) = \delta_K(w)$: we get $w = \pi_K(g\lambda)$.

		۲
		· •
∢ 臣 ≯	- 2	うくで

L Total Variation II

Using the new definition in denoising: Chambolle algorithm

TV-denoising

To minimize:

$$\frac{1}{2} \|u - u_0\|_{L^2(\Omega)}^2 + \lambda J(u)$$

optimality condition:

$$0 \in u - u_0 + \lambda \partial J(u) \Leftrightarrow \frac{u_0 - u}{\lambda} \in \partial J(u)$$

Duality

$$rac{u_0}{\lambda}\in rac{u_0-u}{\lambda}+rac{1}{\lambda}\partial J^*(rac{u_0-u}{\lambda})$$

Set $w = \frac{u_0 - u}{\lambda}$: *w* satisfies

$$0 \in w - rac{u_0}{\lambda} + rac{1}{\lambda} \partial J^*(w)$$

This is the subdifferential of the convex function

$$\frac{1}{2} \|w - u_0 / \lambda\|^2 + \frac{1}{\lambda} J^*(w)$$

But $J^*(w) = \delta_K(w)$: we get $w = \pi_K(g\lambda)$.

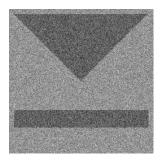
Þ	•	æ	Þ	æ	500

• • • • • • • • • •

- Total Variation II
 - Using the new definition in denoising: Chambolle algorithm

Example

The usual original



Denoised by projection

- Total Variation II

Image Simplification

Outline

1 Motivation

- Origin and uses of Total Variation
- Denoising
- Tikhonov regularization
- 1-D computation on step edges

2 Total Variation

- First definition
- Rudin-Osher-Fatemi
- Inpainting/Denoising

3 Total Variation II

- Relaxing the derivative constraints
- Definition in action
- Using the new definition in denoising: Chambolle algorithm

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

Image Simplification

4 Bibliography

5 The End

Image Simplification

Camerman Example

Solution of denoising energy present numerically stair-casing effect (Nikolova) $\lambda = 100$

Original

xc

The gradient becomes "sparse".

 $\lambda = 500$

Bibliography

- Tikhonov, A. N.; Arsenin, V. Y. 1977. Solution of Ill-posed Problems.
- Wahba, G, 1990. Spline Models for Observational Data.
- Rudin, L.; Osher, S.; Fatemi, E. 1992. Nonlinear Total Variation Based Noise Removal Algorithms.
- Chambolle, A. 2004. An algorithm for Total Variation Minimization and Applications.
- Nikolova, M. 2004. Weakly Constrained Minimization: Application to the Estimation of Images and Signals Involving Constant Regions

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Total Variation			
L The End			

The End

