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Origin and uses of Total Variation

In mathematics: the Plateau problem of minimal surfaces, i.e. surfaces of minimal
area with a given boundary

In image analysis: denoising, image reconstruction, segmentation...

An ubiquitous prior for many image processing tasks.
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Denoising

Determine an unknown image from a noisy observation.
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Methods

All methods based on some statistical inference.

Fourier/Wavelets

Markov Random Fields

Variational and Partial Differential Equations methods

...

We focus on variational and PDE methods.



Total Variation

Motivation

Denoising

A simple corruption model

A digital image u of size N ×M pixels, corrupted by Gaussian white noise of
variance σ2

write it as observed image u0 = u + η, ‖u − u0‖2 =
∑

ij (uij − u0ij )
2 = NMσ2

(noise variance = σ2),
∑

ij uij =
∑

ij u0ij (zero mean noise).

could add a blur degradation u0 = Ku + η for instance, so to have
‖Ku − u0‖2 = NMσ2.
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Recovery

The problem: Find u such that

‖u − u0‖2 = NMσ2,
∑

ij

uij =
∑

ij

u0ij (1)

is not well-posed. Many solutions possible.

In order to recover u, extra information is needed, e.g. in the form of a prior on u.

For images, smoothness priors often used.

Let Ru a digital gradient of u, Then find smoothest u that satisfy constraints (1),
the smoothest meaning with smallest

T (u) = ‖Ru‖ =

√∑
ij

|Ru|2ij .
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Tikhonov regularization

It can be show that this is equivalent to minimize

E(u) = ‖Ku − u0‖2 + λ‖Ru‖2

for a λ = λ(σ) (Wahba?).

E(u) minimizaton can be derived from a Maximum a Posteriori formulation

Arg.max
u

p(u|u0) =
p(u0|u)p(u)

p(u0)

Rewriting in a continuous setting:

E(u) =

∫
Ω

(Ku − uo)2 dx + λ

∫
Ω
|∇u|2 dx
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How to solve?

Solution satisfies the Euler-Lagrange equation for E :

K∗ (Ku − u0)− λ∆u = 0.

(K∗ is the adjoint of K )

A linear equation, easy to implement, and many fast solvers exit, but...
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Tikhonov example

Denoising example, K = Id .

Original λ = 50 λ = 500

Not good: images contain edges but Tikhonov blur them. Why?

The term
∫

Ω(u − u0)2 dx : not guilty!

Then it must be
∫

Ω |∇u|2 dx . Derivatives and step edges do not go too well
together?
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1-D computation on step edges

Set Ω = [−1, 1], a a real number and u the step-edge function

u(x) =

{
0 x ≤ 0
a x > 0

Not differentiable at 0, but forget about it and try to compute∫ 1

−1
|u′(x)|2 dx .

Around 0 “approximate” u′(x) by

u(h)− u(−h)

2h
, h > 0, small
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with this finite difference approximation

u′(x) ≈
a

2h
, x ∈ [−h, h]

then ∫ 1

−1
|u′(x)|2 dx =

∫ −h

−1
|u′(x)|2 dx +

∫ h

−h
|u′(x)|2 dx +

∫ 1

h
|u′(x)|2 dx

= 0 + 2h ×
( a

2h

)2
+ 0

=
a2

2h
→∞, h→ 0

So a step-edge has “infinite energy”. It cannot minimizes Tikhonov.

What went “wrong”: the square:
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1-D computation on step edges

Replace the square in the previous computation by p > 0 and redo:

Then∫ 1

−1
|u′(x)|p dx =

∫ −h

−1
|u′(x)|p dx +

∫ h

−h
|u′(x)|p dx +

∫ 1

h
|u′(x)|p dx

= 0 + 2h ×
∣∣∣ a
2h

∣∣∣p + 0

= |a|p(2h)1−p <∞ when p ≤ 1

When p ≤ 1 this is finite! Edges can survive here!

Quite ugly when p < 1 (but not uninteresting)

When p = 1, this is the Total Variation of u.
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First definition

Let u : Ω ⊂ Rn → R. Define total variation as

J(u) =

∫
Ω
|∇u| dx , |∇u| =

√√√√ n∑
i=1

u2
xi
.

When J(u) is finite, one says that u has bounded variations and the space of
function of bounded variations on Ω is denoted BV (Ω).
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First definition

Expected: when minimizing J(u) with other constraints, edges are less penalized
that with Tikhonov.

Indeed edges are “naturally present” in bounded variation functions. In fact:
functions of bounded variations can be decomposed in

1 smooth parts,∇u well defined,

2 Jump discontinuities (our edges)

3 something else (Cantor part) which can be nasty...

The functions that do not possess this nasty part form a subspace of BV (Ω)
called SBV (Ω), The Special functions of Bounded Variation, (used for instance
when studying Mumford-Shah functional)
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ROF Denoising

State the denoising problem as minimizing J(u) under the constraints∫
Ω

u dx =

∫
Ω

uo dx ,
∫

Ω
(u − u0)2 dx = |Ω|σ2 (|Ω| = area/volume of Ω)

Solve via Lagrange multipliers.
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TV-denoising

Chambolle-Lions: there exists λ such the solution minimizes

ETV (u) =
1
2

∫
Ω

(Ku − u0)2 dx + λ

∫
Ω
|∇u| dx

Euler-Lagrange equation:

K∗(Ku − u0)− λdiv
(
∇u
|∇u|

)
= 0.

The term div
(
∇u
|∇u|

)
is highly non linear. Problems especially when |∇u| = 0.

In fact ∇u/
|∇u| (x) is the unit normal of the level line of u at x and div

(
∇u
|∇u|

)
is the

(mean)curvature of the level line: not defined when the level line is singular or
does not exist!
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Acar-Vogel

Replace it by regularized version

|∇u|β =
√
|∇u|2 + β, β > 0

Acar - Vogel show that

lim
β→0

(
Jβ(u) =

∫
Ω
|∇u|β dx

)
= J(u).

Replace energy by

E ′(u) =

∫
Ω

(Ku − u0)2 dx + λJβ(u)

Euler-Lagrange equation:

K∗(Ku − u0)− λdiv
(
∇u
|∇u|β

)
= 0

The null denominator problem disappears.
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Example

Implementation by finite differences, fixed-point strategy, linearization.

Original λ = 1.5, β = 10−4
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Inpainting/Denoising

Filling u in the subset H ⊂ Ω where data is missing, denoise known data

Inpainting energy (Chan & Shen):

EITV (u) =
1
2

∫
Ω\H

(u − u0)2 dx + λ

∫
Ω
|∇u| dx

Euler-Lagrange Equation:

(u − u0)χ− λdiv
(
∇u
|∇u|

)
= 0.

(χ(x) = 1 is x 6∈ H, 0 otherwise).

Very similar to denoising. Can use the same approximation/implementation.
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Degraded Inpainted
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Segmention

Inpainting - driven segmention (Lauze, Nielsen 2008, IJCV)

Aortic calcifiction Detection Segmention
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Relaxing the derivative constraints

With definition of total variation as

J(u) =

∫
Ω
|∇u| dx

u must have (weak) derivatives.

But we just saw that the computation is possible for a step-edge u(x) = 0, x < 0,
u(x) = a, x > 0: ∫ 1

−1
|u′(x)| dx = |a|

Can we avoid the use of derivatives of u?
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Relaxing the derivative constraints

Assume first that ∇u exists.

|∇u| = ∇u ·
∇u
|∇u|

(except when ∇u = 0) and ∇u
|∇u| is the normal to the level lines of u, it has

everywhere norm 1.

Let V the set of vector fields v(x) on Ω with |v(x)| ≤ 1. I claim

J(u) = sup
v∈V

∫
Ω
∇u(x) · v(x) dx

(consequence of Cauchy-Schwarz inequality).
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Relaxing the derivative constraints

Restrict to the set W of such v ’s that are differentiable and vanishing at ∂Ω, the
boundary of Ω Then

J(u) = sup
v∈W

∫
Ω
∇u(x) · v(x) dx

But then I can use Divergence theorem: H ⊂ D ⊂ Rn, f : D → R differentiable
function, g = (g1, . . . , gn) : D → Rn differentiable vector field and
div g =

∑n
i=1 g i

xi
,∫

H
∇f · g dx = −

∫
H

fdiv g dx +

∫
∂H

fg · n(s) ds

with n(s) exterior normal field to ∂H.

Apply it to J(u) above:

J(u) = sup
v∈W

(
−
∫

Ω
u(x) div v(x) dx

)
The gradient has disappeared from u! This is the classical definition of total
variation.

Note that when ∇u(x) 6= 0, optimal v(x) = (∇u/|∇|u)(x) and divv(x) is the
mean curvature of the level set of u at x . Geometry is there!
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Definition in action

Step-edge

u the step-edge function defined in previous slides. We compute J(u) with the
new definition.

here W = {φ : [−1, 1]→ R differentiable, φ(−1) = φ(1) = 0, |φ(x)| ≤ 1},

J(u) = sup
φ∈W

∫ 1

−1
u(x)φ′(x) dx

we compute ∫ 1

−1
u(x)φ′(x) dx = a

∫ 1

0
φ′(x) dx

= a (φ(1)− φ(0))

= −aφ(0)

As −1 ≤ φ(0) ≤ 1, the maximum is |a|.



Total Variation

Total Variation II

Definition in action

Step-edge

u the step-edge function defined in previous slides. We compute J(u) with the
new definition.

here W = {φ : [−1, 1]→ R differentiable, φ(−1) = φ(1) = 0, |φ(x)| ≤ 1},

J(u) = sup
φ∈W

∫ 1

−1
u(x)φ′(x) dx

we compute ∫ 1

−1
u(x)φ′(x) dx = a

∫ 1

0
φ′(x) dx

= a (φ(1)− φ(0))

= −aφ(0)

As −1 ≤ φ(0) ≤ 1, the maximum is |a|.



Total Variation

Total Variation II

Definition in action

Step-edge

u the step-edge function defined in previous slides. We compute J(u) with the
new definition.

here W = {φ : [−1, 1]→ R differentiable, φ(−1) = φ(1) = 0, |φ(x)| ≤ 1},

J(u) = sup
φ∈W

∫ 1

−1
u(x)φ′(x) dx

we compute ∫ 1

−1
u(x)φ′(x) dx = a

∫ 1

0
φ′(x) dx

= a (φ(1)− φ(0))

= −aφ(0)

As −1 ≤ φ(0) ≤ 1, the maximum is |a|.



Total Variation

Total Variation II

Definition in action

Step-edge

u the step-edge function defined in previous slides. We compute J(u) with the
new definition.

here W = {φ : [−1, 1]→ R differentiable, φ(−1) = φ(1) = 0, |φ(x)| ≤ 1},

J(u) = sup
φ∈W

∫ 1

−1
u(x)φ′(x) dx

we compute ∫ 1

−1
u(x)φ′(x) dx = a

∫ 1

0
φ′(x) dx

= a (φ(1)− φ(0))

= −aφ(0)

As −1 ≤ φ(0) ≤ 1, the maximum is |a|.



Total Variation

Total Variation II

Definition in action

Step-edge

u the step-edge function defined in previous slides. We compute J(u) with the
new definition.

here W = {φ : [−1, 1]→ R differentiable, φ(−1) = φ(1) = 0, |φ(x)| ≤ 1},

J(u) = sup
φ∈W

∫ 1

−1
u(x)φ′(x) dx

we compute ∫ 1

−1
u(x)φ′(x) dx = a

∫ 1

0
φ′(x) dx

= a (φ(1)− φ(0))

= −aφ(0)

As −1 ≤ φ(0) ≤ 1, the maximum is |a|.



Total Variation

Total Variation II

Definition in action

Step-edge

u the step-edge function defined in previous slides. We compute J(u) with the
new definition.

here W = {φ : [−1, 1]→ R differentiable, φ(−1) = φ(1) = 0, |φ(x)| ≤ 1},

J(u) = sup
φ∈W

∫ 1

−1
u(x)φ′(x) dx

we compute ∫ 1

−1
u(x)φ′(x) dx = a

∫ 1

0
φ′(x) dx

= a (φ(1)− φ(0))

= −aφ(0)

As −1 ≤ φ(0) ≤ 1, the maximum is |a|.



Total Variation

Total Variation II

Definition in action

2D example

B open set with regular boundary curve partialB, Ω large enough to contain B and
χB the characteristic function of B

χB(x) =

{
1 x ∈ B
0 x 6∈ B

For v ∈ W , by the divergence theorem on B and its boundary ∂B∫
Ω
χ(x)div v(x) dx =

∫
B

div v(x) dx

= −
∫
∂B

v(s) · n(s) ds

(n(s) is the exterior normal to ∂B)

This integral is maximized when v = −n : length of ∂B perimeter of B.
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Definition in action

Sets of finite perimeter

Let H ⊂ Ω. If its characteristic function χH satisfies

J(χH ) <∞

H is called set of finite perimeter (and PerΩ(H) := J(χH ) is its perimeter)

This is used for instance in the Chan and Vese algorithm.

If J(u) <∞ and Ht = {x ∈ Ω, u(x) < t} the lower t-level set of u,

J(u) =

∫ +∞

−∞
J(χHt ) dt Coarea formula
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Using the new definition in denoising: Chambolle algorithm

Chambolle algorithm

Let K ∈ L2(Ω) the closure of the set {div v , v ∈ C1
0 (Ω)2, |v(x)| ≤ 1} i.e. the

image of W by div.

Then

J(u) = sup
φ∈K

(∫
Ω

u φ dx = 〈u, φ〉L2(Ω)

)
Solution of the denoising problem arg.min

∫
Ω(u − u0)2 + λJ(u) given by

u = u0 − πλK (u0)

with πλK orthogonal projection onto the convex set λK (Chambolle).

Needs a bit of convex analysis to show that: subdifferentials and subgradients,
Fenchel transforms, indicators/characteristic functions and elementary results on
them
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Using the new definition in denoising: Chambolle algorithm

Fenchel Transform

X Hilbert space, f : X → R convex, proper. Fenchel transform of F :

F∗(v) = sup
u∈X

(〈u, v〉X − F (u))

Geometric meaning: take u∗ such that F∗(u∗) < +∞: the affine function

a(u) = 〈u, u∗〉 − F∗(u∗)

is tangent to F and a(0) = −F∗(u∗).
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Using the new definition in denoising: Chambolle algorithm

Fenchel transform

Interesting properties:
Convex
if Φ is the transform of F and λ > 0, then the transform of u 7→ λF (λ−1(u) is λΦ.
if F 1-homogeneous, i.e. F (λu) = λF (u) then F∗(u) only take values 0 and +∞ as the
property above implies F∗ = λF∗, λ > 0.
In that case, the set where F∗ = 0 i a closed convex set of X , F∗ = δC , the indicator
function of C,

δC (x) =

{
0 , x ∈ C
+∞ , x 6∈ C

For x ∈ R 7→ |x|, C = [−1, 1]
For J(u), C = K .
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Using the new definition in denoising: Chambolle algorithm

Subdifferentials

subdifferential of F at u: ∂F (u) = {v ∈ X ,F (w)− F (u) ≥ 〈w − u, v〉, ∀w ∈ X}.
v ∈ ∂F (u) is a subgradient of F at u.
Three fundamental (and easy) properties:

0 ∈ ∂F (u) iff u global minimizer of F
u∗ ∈ ∂F (u)⇔ F (u) + F∗(u∗) = 〈u, u∗〉
Duality: u∗ ∈ ∂F (u)⇔ u ∈ ∂F∗(u)

The duality above allows to transform optimization of homogeneous functions into
domain constraints!



Total Variation

Total Variation II

Using the new definition in denoising: Chambolle algorithm

Subdifferentials

subdifferential of F at u: ∂F (u) = {v ∈ X ,F (w)− F (u) ≥ 〈w − u, v〉, ∀w ∈ X}.
v ∈ ∂F (u) is a subgradient of F at u.
Three fundamental (and easy) properties:

0 ∈ ∂F (u) iff u global minimizer of F
u∗ ∈ ∂F (u)⇔ F (u) + F∗(u∗) = 〈u, u∗〉
Duality: u∗ ∈ ∂F (u)⇔ u ∈ ∂F∗(u)

The duality above allows to transform optimization of homogeneous functions into
domain constraints!



Total Variation

Total Variation II

Using the new definition in denoising: Chambolle algorithm

Subdifferentials

subdifferential of F at u: ∂F (u) = {v ∈ X ,F (w)− F (u) ≥ 〈w − u, v〉, ∀w ∈ X}.
v ∈ ∂F (u) is a subgradient of F at u.
Three fundamental (and easy) properties:

0 ∈ ∂F (u) iff u global minimizer of F
u∗ ∈ ∂F (u)⇔ F (u) + F∗(u∗) = 〈u, u∗〉
Duality: u∗ ∈ ∂F (u)⇔ u ∈ ∂F∗(u)

The duality above allows to transform optimization of homogeneous functions into
domain constraints!



Total Variation

Total Variation II

Using the new definition in denoising: Chambolle algorithm

Subdifferentials

subdifferential of F at u: ∂F (u) = {v ∈ X ,F (w)− F (u) ≥ 〈w − u, v〉, ∀w ∈ X}.
v ∈ ∂F (u) is a subgradient of F at u.
Three fundamental (and easy) properties:

0 ∈ ∂F (u) iff u global minimizer of F
u∗ ∈ ∂F (u)⇔ F (u) + F∗(u∗) = 〈u, u∗〉
Duality: u∗ ∈ ∂F (u)⇔ u ∈ ∂F∗(u)

The duality above allows to transform optimization of homogeneous functions into
domain constraints!



Total Variation

Total Variation II

Using the new definition in denoising: Chambolle algorithm

Subdifferentials

subdifferential of F at u: ∂F (u) = {v ∈ X ,F (w)− F (u) ≥ 〈w − u, v〉, ∀w ∈ X}.
v ∈ ∂F (u) is a subgradient of F at u.
Three fundamental (and easy) properties:

0 ∈ ∂F (u) iff u global minimizer of F
u∗ ∈ ∂F (u)⇔ F (u) + F∗(u∗) = 〈u, u∗〉
Duality: u∗ ∈ ∂F (u)⇔ u ∈ ∂F∗(u)

The duality above allows to transform optimization of homogeneous functions into
domain constraints!



Total Variation

Total Variation II

Using the new definition in denoising: Chambolle algorithm

Subdifferentials

subdifferential of F at u: ∂F (u) = {v ∈ X ,F (w)− F (u) ≥ 〈w − u, v〉, ∀w ∈ X}.
v ∈ ∂F (u) is a subgradient of F at u.
Three fundamental (and easy) properties:

0 ∈ ∂F (u) iff u global minimizer of F
u∗ ∈ ∂F (u)⇔ F (u) + F∗(u∗) = 〈u, u∗〉
Duality: u∗ ∈ ∂F (u)⇔ u ∈ ∂F∗(u)

The duality above allows to transform optimization of homogeneous functions into
domain constraints!



Total Variation

Total Variation II

Using the new definition in denoising: Chambolle algorithm

Subdifferentials

subdifferential of F at u: ∂F (u) = {v ∈ X ,F (w)− F (u) ≥ 〈w − u, v〉, ∀w ∈ X}.
v ∈ ∂F (u) is a subgradient of F at u.
Three fundamental (and easy) properties:

0 ∈ ∂F (u) iff u global minimizer of F
u∗ ∈ ∂F (u)⇔ F (u) + F∗(u∗) = 〈u, u∗〉
Duality: u∗ ∈ ∂F (u)⇔ u ∈ ∂F∗(u)

The duality above allows to transform optimization of homogeneous functions into
domain constraints!



Total Variation

Total Variation II

Using the new definition in denoising: Chambolle algorithm

TV-denoising

To minimize:
1
2
‖u − u0‖2

L2(Ω
+ λJ(u)

optimality condition:

0 ∈ u − u0 + λ∂J(u)⇔
u0 − u
λ

∈ ∂J(u)

Duality
u0

λ
∈

u0 − u
λ

+
1
λ
∂J∗(

u0 − u
λ

)

Set w =
u0−u
λ

: w satisfies

0 ∈ w −
u0

λ
+

1
λ
∂J∗(w)

This is the subdifferential of the convex function

1
2
‖w − u0/λ‖2 +

1
λ

J∗(w)

But J∗(w) = δK (w): we get w = πK (gλ).
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Using the new definition in denoising: Chambolle algorithm

Example

The usual original Denoised by projection
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Image Simplification

Camerman Example

Solution of denoising energy present numerically stair-casing effect (Nikolova)

Original

xc

λ = 100 λ = 500

The gradient becomes “sparse”.
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