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Basic inequality

recall basic inequality for convex differentiable f:

fly) = f(2) + V(@) (y — )

e the first-order approximation of f at x is a global lower bound

e V f(z) defines non-vertical supporting hyperplane to epi f at (z, f(x))
T
[ Vi(lx) ] ([ ?i ] _ [ fzsx) ]) <0 VY(y,t)cepif

what if f is not differentiable?
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Subgradient

g is a subgradient of a convex function f at x € dom f if

fly) = f@)+9" (y—x) Vyedomf

f(x)

f(z1) + g1 (& — 21)
: /,f(ﬂcz) + gl (x — x2)
x"'l_/_,,,f(ﬂ?z) + g5 (x — )

‘v i
T - i)

g2, g3 are subgradients at xs; g7 is a subgradient at z;
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properties

o f(x)+ g (y— ) is a global lower bound on f(y)

e ¢ defines non-vertical supporting hyperplane to epi f at (z, f(x))

4 (2]-[ o]0 s

e if f is convex and differentiable, then V f(x) is a subgradient of f at z

applications

e algorithms for nondifferentiable convex optimization
e unconstrained optimality:  minimizes f(z) if and only if 0 € 0f(x)

e KKT conditions with nondifferentiable functions
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Example

f(x) = max{fi(z), fo(z)} f1, f2 convex and differentiable

fi(z)

fa(z)

Zo

e subgradients at xo form line segment [V f1(xq), V fa(z0)]
o if f1(Z) > fo(&), subgradient of f at & is V f1(&)
o if f1(Z) < f2(&), subgradient of f at & is V fo(&)
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Subdifferential

the subdifferential 0f(x) of f at z is the set of all subgradients:

Of(x) ={g|g"(y—z) < f(y) — f(z) Vy € dom [}

properties

e Of(x) is a closed convex set (possibly empty)

(follows from the definition: 0f(x) is an intersection of halfspaces)

e if z € intdom f then Of(x) is nonempty and bounded

(proof on next two pages)
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proof: we show that 0f(z) is nonempty when x € int dom f

e (x, f(x)) is in the boundary of the convex set epi f

therefore there exists a supporting hyperplane to epi f at (x, f(z)):

3(a,b) # 0, [ Z]Tq / } B { f(xx) D <0  Y(y,t)cepif

b > 0 gives a contradiction as t — oo

b = 0 gives a contradiction for y = x + ea with small ¢ > 0

therefore b < 0 and g = a/|b| is a subgradient of f at x
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proof: Of(x) is bounded when x € int dom f

e for small r > 0, define a set of 2n points
B={xxre,|k=1,...,n} Cdomf
and define M = max f(y) < oo

yeB

e for every nonzero g € 0f(x), there is a point y € B with

f) = fl@)+ 9" (y—a) = f(@) + 79l

(choose an index k with |gx| = ||9]|co, and take y = x + rsign(gx)ex)

e therefore Jf(x) is bounded:

M — f(x
sup gl < X =@
gedf () r
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Examples

absolute value f(z) = |z|

f(z) = || of (x)

Euclidean norm f(z) = ||z||2

1

Il

Of(x)

v ifx#0,  Of(x)={g|llgl2<1} ifz=0
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Monotonicity

subdifferential of a convex function is a monotone operator:

(u—v)'(x—y) >0 Vo, y, u € 0f(x), v € 0f(y)

proof: by definition

fly) > fl@)+u"(y—2),  fl@)>fly)+v (@ —y)

combining the two inequalities shows monotonicity
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Examples of non-subdifferentiable functions

the following functions are not subdifferentiable at z = 0
e f:R— R domf=R,

f(x) =1 ifxz=0, f(x)=0 ifxz>0

e f:R— R domf =R,

the only supporting hyperplane to epi f at (0, f(0)) is vertical
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Subgradients and sublevel sets

if g is a subgradient of f at x, then

f) < flx) = gl (y—x)<0

fly) < f(=)

nonzero subgradients at x define supporting hyperplanes to sublevel set

{y| fly) < f(z)}
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Subgradient calculus

weak subgradient calculus: rules for finding one subgradient

e sufficient for most nondifferentiable convex optimization algorithms

e if you can evaluate f(x), you can usually compute a subgradient

strong subgradient calculus: rules for finding df(z) (all subgradients)

e some algorithms, optimality conditions, etc., need entire subdifferential

e can be quite complicated

we will assume that x € int dom f

Subgradients 4-13



Basic rules

differentiable functions: 0f(z) = {V f(z)} if f is differentiable at x

nonnegative combination

if h(x) = ayfi(z) + asfo(x) with g, as > 0, then
8h(:17) = CM18f1<£IL’) + OZQan(ZC)

(r.h.s. is addition of sets)

affine transformation of variables: if h(z) = f(Ax + b), then

Oh(x) = ATOf(Ax + b)
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Pointwise maximum

f(:l?) — max{fl(x), R fm(x)}

define I(x) ={i | fi(x) = f(x)}, the ‘active’ functions at x

weak result: to compute a subgradient at z,

choose any k € I(x), and any subgradient of fi at x

strong result

0f(xr) = conv U Ofi(x)

i€l(x)

e convex hull of the union of subdifferentials of ‘active’ functions at z

e if f;'s are differentiable, 0f(x) = conv{V fi(x) | i € I(z)}
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Example: piecewise-linear function

f(r) = max alx+ b

1=1,....,m

1

the subdifferential at x is a polyhedron
Of(z) = conv{a; | i€ I(x)}
with I(z) = {i | alz + b; = f(x)}
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Example: /;-norm

_ _ T
f(z) = ||zl jepax, s

the subdifferential is a product of intervals

[—1, 1] Tl =
8f($):J1><---><Jn, Jk: {1} xk>0
{—1} T <0
I | (L)
_—1 1 ‘1
o
—1
8£(0,0) = [~1,1] x [-1,1]  9f(1,0) = {1} x [~1,1] of(1,1) = {(1,1)}
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Pointwise supremum

f(x) = sup fa(z), fa(x) convex in x for every «
acA

weak result: to find a subgradient at z,

e find any 3 for which f(Z) = fg(2) (assuming maximum is attained)
e choose any g € 0fs(Z)

(partial) strong result: define I(x) = {a € A| fo(x) = f(x)}

conv U Ofa(x) COf(x)

acl(x)

equality requires extra conditions (e.g., A compact, f, continuous in «)
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Exercise: maximum eigenvalue

problem: explain how to find a subgradient of

f(@) = Amax(A(z)) = sup y' A(z)y

lyll2=1

where A(x) = Ag + ©141 + - - - + £, A, with symmetric coefficients A;

solution: to find a subgradient at z,

e choose any unit eigenvector y with eigenvalue Ay ax(A(2))

e the gradient of y? A(x)y at £ is a subgradient of f:

<yTA1y7 SR yTAny> S af(i)
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Minimization
f(x) = inf h(z,y), h jointly convex in (x,y)
Y

weak result: to find a subgradient at z,

e find y that minimizes h(z,y) (assuming minimum is attained)

e find subgradient (g,0) € Oh(Z, )

proof: for all z, v,

Mz,y) > h(@E,9)+9g" (x—2)+0"(y—19)

therefore

Subgradients 4-20



Exercise: Euclidean distance to convex set

problem: explain how to find a subgradient of

— inf ||z —
f(z) = inf Jlz =yl

where (' is a closed convex set

solution: to find a subgradient at z,

o if f(z)=0 (thatis, & € C), take g =0
e if f(z) >0, find projection y = P(Z) on C; take

1 1

P 2 Ty T AR

9
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Composition

f(x) =h(fi(z),..., frlx)), h convex nondecreasing, f; convex

weak result: to find a subgradient at z,

e find z € Oh(f1(Z),..., fx(Z)) and g; € Of;(T)
e then g = 2191 + - - + 2rgx € Of ()

reduces to standard formula for differentiable h, f;

proof:
f(x)

IV
>
—~
.

—
B
+
<
=N
B
|
8

B), ..y Su(@) 4 gk (z — 7))
@)+ 2T (g (2= 7). g (2 - 7))
f(@) +g"(x —2)

IV
=
-
=

®
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Optimal value function

define h(u,v) as the optimal value of convex problem

minimize  fo(x)
subject to  fi(z) < wu
Axr =b+

~

(functions f; are convex; optimization variable is x)

weak result: suppose h(u, v) is finite, strong duality holds with the dual

maximize  inf (fo(a:) + Z Ni(fi(x) — ;) +vT (A — b — @))

subjectto A >0

if \, 0 are optimal dual variables (for r.h.s. @, 9) then (=), —0) € Oh(, )
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proof: by weak duality for problem with r.h.s. u, v
h(u,v) > mf ( )+ Z Ni(fi(x) —w;) + 07 (Ax — b — v))

— ( +Z)\ (filx) — @) ﬁT(Aa:—b—@)>

—N(u—a)—0T(v—12)
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Expectation

f(x) =Eh(z,u) u random, h convex in x for every u

weak result: to find a subgradient at z

e choose a function u — g(u) with g(u) € 0,h(Z,u)
e then, g =E, g(u) € 0f(z)

proof: by convexity of h and definition of g(u),

E (h(2,u) 4+ g(u)"(z — 2))

f@) +g"(z—2)

Vv
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Optimality conditions — unconstrained

x* minimizes f(x) if and only

0€af(xz¥)

f(x)

proof: by definition

fly) > f(x*) + 07 (y — x*) for all y — 0€af(z¥)
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Example: piecewise linear minimization

optimality condition

0 € conv{a; | i€ I(x")} (where I(x) = {i | alz + b; = f(x)})
in other words, x* is optimal if and only if there is a A with
A =0, 1"A=1, > Na; =0, Ai =0 fori & I(z*)
i=1

these are the optimality conditions for the equivalent linear program
minimize t maximize b1\

subject to Ax+b=<t1 subject to ATA =0
A>=0, 1T =1
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Optimality conditions — constrained

minimize  fo(z)
subject to fi(z) <0, i=1,...,m

from Lagrange duality

if strong duality holds, then x*, A\* are primal, dual optimal if and only if
1. x* is primal feasible

2. A" =0

3. X fi(x*)=0fori=1,...,m

4. x* is a minimizer of

L(@,X%) = fola) + 3 Nifia)
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Karush-Kuhn-Tucker conditions (if dom f; = R")

conditions 1, 2, 3 and

0 € OL,(x*, \*) = 0 fo(x +Z>\*8fl

this generalizes the condition
0=Vfo(a*) + ) NVfi(x¥)
i=1

for differentiable f;
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Directional derivative

definition (general f): directional derivative of f at x in the direction y is

ooy o St oy) — f(w)
f(x7y) T (}él{‘l}) Q

t— 00 t

= i (s 0 - 0f(@)

(if the limit exists)

o f'(x;y) is the right derivative of g(a) = f(x + ay) at « =0
e f’(x;y) is homogeneous in y:

f(x; Ay) = Nf'(x;y) for A >0
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Directional derivative of a convex function

equivalent definition (convex f): replace lim with inf

flz+ay) — f(z)

fl(zy) = inf -
_— (tf(w+%y)—tf(w))

proof

e the function h(y) = f(z +y) — f(z) is convex in y, with h(0) =0

e its perspective th(y/t) is nonincreasing in ¢t (EE236B ex. A2.5); hence

F'(wy) = lim th(y/t) = inf th(y/1)
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Properties

consequences of the expressions (for convex f)

oy — g L) @)

a>0 o

t>0

_ mfcﬂx+%m—tﬂ@>

e f'(x;y) is convex in y (partial minimization of a convex function in y,t)

e f'(x;y) defines a lower bound on f in the direction y:

flx+ay) > f(z) +af(zy)  VYa>0
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Directional derivative and subgradients

for convex f and = € int dom f
fllziy) = sup g'y

g€ f(x)

f'(x;y) is support function of Jf(x)
of(x)

e generalizes f/'(z;y) = V f(x)Ty for differentiable functions

e implies that f/(x;y) exists for all x € int dom f, all y (see page 4-6)
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proof: if g € 0f(x) then from p.4-31

a>0 «

it remains to show that f/(z;y) = g1y for at least one § € Of(x)

e f'(x;y) is convex in y with domain R™, hence subdifferentiable at all y

e let g be a subgradient of f'(x;y) at y: for all v, A > 0,

A (m0) = [ 00) > f(a;y) + 37 (v — )

e taking A — oo shows f/(z;v) > gTv; from the lower bound on p. 4-32
flx+v) > fz) + f'(z;0) > fla) + g0 Vo

e hence g € Of(x); taking A = 0 we see that f'(z;y) < gly
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Descent directions and subgradients

y is a descent direction of f at z if f/(z;y) <0

e negative gradient of differentiable f is descent direction (if V f(x) # 0)

e negative subgradient is not always a descent direction

example: f(z1,72) = |71] + 2|22

g=(1,2) € 9f(1,0), but y = (—1,—2) is not a descent direction at (1,0)
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Steepest descent direction

definition: (normalized) steepest descent direction at = € intdom f is

AZysqa = argmin f'(x;y)
lyll2<1

Az pgq is the primal solution y of the pair of dual problems (BV §8.1.3)

minimize (over y) f/(z;y) maximize (over g) —||g]|2
subject to lyll2 <1 subject to g€ of(x)

e optimal g* is subgradient with least norm
o fi(@; Axnsa) = —llg”]2

e if 0 ¢ 0F(2), Avned = —g*/||g* 5 T
Axnsd
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Subgradients and distance to sublevel sets

if fis convex, f(y) < f(x), g € 0f(x), then for small t > 0,

|z —tg—yllz = |z—yl5—2tg" (x —y) +t*||g||3
< oz —yll3 —2t(f(@) — f) +£lgll3
< |z —yl3

e —g is descent direction for ||x — y||2, for any y with f(y) < f(x)

e in particular, —g is descent direction for distance to any minimizer of f
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