1 Optimization methods

1.1 Convex functions

Proposition: Let f be a C! function. Then f is convex if and only if domf is
convex and V f is monotone,

(Vf(x) = Vf(y),>—y) >0.

Proof. = Use the first order convexity criterion.
< Consider g(t) = f(z + t(y — x). Integrate ¢'(¢). (Try it!). O

Proposition: Let f be a convex C' function. Then the following are equivalent.

1. Vf(x) is Lipschitz: there exists L > 0 such that

IVf(z) = VIl < Lllx —yll, Vo,y € domf

2. g(x) = %||:c||2 — f(x) is convex.

3. Quadratic upper bound

F() < F(@) + (VT @)y — ) + olly — ol Va,y € domy

Proof. (a)= (b): Note that Vg(z) = Lz — Vf(x).

(Vg(z) = Vg(y),z —y) = (L(z —y) = (Vf(z) = Vf(y),z —y))

= Ll|lz —y[|* = (Vf(z) = V(y),z —y)
> Ll — gl = [V f(x) = VI)llllx - yl|
> Ll =yl = Lljz — y|I* > 0

Hence ¢ is convex.

(b)=-(c) Since g is convex, g(y) > g(z) + (Vg(z),y — x)

So Sllyll* = f(y) = §llzl]* — f(x) + (Le — Vf(z),y — x).

Hence f(y) < f(z) + (Vf(z),y — ) + 5|y — =|]*.

(©)=(a) f(y) < f(x) +(Vf(z),y —2)+ 5[y — |

f@) < F) + (V) e —y) + &l —y|]?

Adding the two inequalities, we get,

(Vf(z) = Vf(y).z—y) < Lllz -yl
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We need to show that (Vf(z) — Vf(y),z —y) > 1||Vf(z) — Vf(y)|*
Consider the function ¢,(2) := f(z) — (Vf(z), 2).

¢ is convex and Vo (z) = Vf(z) — Vf(x).

Since, f(2) < f(y) +(VF(),2 —y) + 5llz — ylI, we have

f(2) =(Vf(x),2) < f(y) = (VI (2),9) +(Vf(y) = V[(2), 2 —y) +§|Iz—y|12

That is I
Qsz(z) < d’x(y) + <v¢x(y)7z - y> + 5”'2 - yH2

We minimized both sides over z. The left hand side is minimized at z = x.
The right hand side is minimized at z = —%ng)z(y) + y. Hence,

F(&) ~ (V5(@), ) = 62(0) < 6al) + (Vou(y), 7 Voalt)) + 5117 Vou0)
= ()~ (Vi@),9) ~ 5 IV )~ V(@)

So
Fl) — £~ (VF@)y —2) > o= 95 ) — V)P

Interchange the role of x,y, we get

Fla) ~ o)~ (V) ) = 5= V() ~ VI (@)

Adding the two inequalities, we get

(Vi) = Vi)x—y) > IV - Vi)

Proposition: Suppose f is a convex C! function. Suppose Vf(z) is Lipschitz
continuous with parameter L. Suppose z* is a global minimum of f. Then

1 L
S V@I < fa) = f (@) < 5 ]z — 2]

Proof. From quadratic upper bound, we get

Fl@) < F@*) + (V)2 —a%) + 2l — 27|
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But z* is a global minimum, so V f(z*) = 0.
Now, consider inf,(f(y) + (Vf(z) +y—z) + %Hy — z||%. Tt is minimized at

_ Vi(z)
y=a— 22

Hence
") =t (o) < inf () + (VS =) + Gy~ ol ) = )5 197 @)P
]

1.2 Descent Methods

Consider the following minimization problem

min f(z)

where f is a convex differentiable function.
A general optimization algorithm is of the following form:

Choose initial point z° and repeat
el =2k 4 dk, k=01, ...

What should we choose for d*? What should we choose for t;,?
For the first question, we want d* to be a descent direction, that is

(d", Vf@h) <0

Since f is convex, if (Vf(z*),txd*) > 0, then f(z**1) > f(2*). Hence in
order to for the function value to descent, we must have

(d*,Vf@*) <0

As for the second question, there are mainlty three ways to select t.
Fixed step size: t; is constant.
Exact line search

ty = argming f(x + sdy)

Backtracking line search: Choose 0 < 5 < 1, initialize t; = 1; take t; :=
[t until

o~ (@) < f(@) — Sl V7@
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1.3 Gradient descent

In gradient descent, we choose dj, to be V f(z). So 2" = 2% — 1,V f (zF).

Proposition: Suppose f is a convex C! function and Vf(x) is Lipschitz with
parameter L. If the step size t < %, then the fixed size gradient descent satisfies

@) — f@) < = “II°

PR 0_
< gl ==

Proof. Let T := x — tV f(z). Then using quadratic upper bound, we have,

2
Fa) < 1@+ (04 5 ) INF@IP < @) - IV S

Since f is convex, f (z*) > f(z) + (Vf(x),2* — z). Then
f (@) < f(@) - IV S @
< () o) = IV
=t o (o =21 = o — 2 = V@)
= 1 o (o =2 = [l = 2|)

Summing the above, we get

k k
) 1 ) .
(F @) = 1) < 5 2 (" =a*[* = o' = 2[*)
=1 =1
_ 1 <Hx0 _ x*H2 _ ka - 2)
2t
< e~ 2|

But f(2¢) is decreasing, hence

Fe) =1 <20 E) ) < gl



