1 Optimization methods

1.1 Convex functions

Proposition: Let f be a C^1 function. Then f is convex if and only if dom f is convex and ∇f is monotone,

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge 0.$$

 $Proof. \Rightarrow \text{Use the first order convexity criterion.}$

$$\Leftarrow$$
 Consider $g(t) = f(x + t(y - x))$. Integrate $g'(t)$. (Try it!).

Proposition: Let f be a convex C^1 function. Then the following are equivalent.

1. $\nabla f(x)$ is Lipschitz: there exists L > 0 such that

$$||\nabla f(x) - \nabla f(y)|| \le L||x - y||, \ \forall x, y \in \text{dom} f$$

- 2. $g(x) := \frac{L}{2}||x||^2 f(x)$ is convex.
- 3. Quadratic upper bound

$$f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2, \forall x, y \in \text{dom} f$$

Proof. (a) \Rightarrow (b): Note that $\nabla g(x) = Lx - \nabla f(x)$.

$$\begin{split} \langle \nabla g(x) - \nabla g(y), x - y \rangle &= \langle L(x - y) - (\nabla f(x) - \nabla f(y), x - y) \rangle \\ &= L||x - y||^2 - \langle \nabla f(x) - \nabla f(y), x - y \rangle \\ &\geq L||x - y||^2 - ||\nabla f(x) - \nabla f(y)||||x - y|| \\ &\geq L||x - y||^2 - L||x - y||^2 \geq 0 \end{split}$$

Hence g is convex.

(b)
$$\Rightarrow$$
(c) Since g is convex, $g(y) \ge g(x) + \langle \nabla g(x), y - x \rangle$
So $\frac{L}{2}||y||^2 - f(y) \ge \frac{L}{2}||x||^2 - f(x) + \langle Lx - \nabla f(x), y - x \rangle$.
Hence $f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2}||y - x||^2$.
(c) \Rightarrow (a) $f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2}||y - x||^2$
 $f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2}||x - y||^2$
Adding the two inequalities, we get,

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \le L||x - y||^2$$

We need to show that $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \frac{1}{L} ||\nabla f(x) - \nabla f(y)||^2$. Consider the function $\phi_x(z) := f(z) - \langle \nabla f(x), z \rangle$. ϕ_x is convex and $\nabla \phi_x(z) = \nabla f(z) - \nabla f(x)$. Since, $f(z) \le f(y) + \langle \nabla f(y), z - y \rangle + \frac{L}{2} ||z - y||^2$, we have

$$f(z) - \langle \nabla f(x), z \rangle \leq f(y) - \langle \nabla f(x), y \rangle + \langle \nabla f(y) - \nabla f(x), z - y \rangle + \frac{L}{2} ||z - y||^2$$

That is

$$\phi_x(z) \le \phi_x(y) + \langle \nabla \phi_x(y), z - y \rangle + \frac{L}{2}||z - y||^2$$

We minimized both sides over z. The left hand side is minimized at z = x. The right hand side is minimized at $z = -\frac{1}{L}\nabla\phi_x(y) + y$. Hence,

$$f(x) - \langle \nabla f(x), x \rangle = \phi_x(x) \le \phi_x(y) + \langle \nabla \phi_x(y), -\frac{1}{L} \nabla \phi_x(y) \rangle + \frac{L}{2} ||\frac{1}{L} \nabla \phi_x(y)||^2$$
$$= f(y) - \langle \nabla f(x), y \rangle - \frac{1}{2L} ||\nabla f(y) - \nabla f(x)||^2$$

So

$$f(y) - f(x) - \langle \nabla f(x), y - x \rangle \ge \frac{1}{2L} \|\nabla f(y) - \nabla f(x)\|^2$$

Interchange the role of x, y, we get

$$f(x) - f(y) - \langle \nabla f(y), x - y \rangle \ge \frac{1}{2L} \|\nabla f(y) - \nabla f(x)\|^2$$

Adding the two inequalities, we get

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \frac{1}{L} ||\nabla f(x) - \nabla f(y)||^2$$

Proposition: Suppose f is a convex C^1 function. Suppose $\nabla f(x)$ is Lipschitz continuous with parameter L. Suppose x^* is a global minimum of f. Then

$$\frac{1}{2L} \|\nabla f(x)\|^2 \le f(x) - f(x^*) \le \frac{L}{2} \|x - x^*\|^2$$

Proof. From quadratic upper bound, we get

$$f(x) \le f(x^*) + \langle \nabla f(x^*), x - x^* \rangle + \frac{L}{2} ||x - x^*||^2$$

But x^* is a global minimum, so $\nabla f(x^*) = 0$. Now, consider $\inf_y (f(y) + \langle \nabla f(x) + y - x \rangle + \frac{L}{2} ||y - x||^2$. It is minimized at $y = x - \frac{\nabla f(x)}{L}$. Hence

$$f(x^*) = \inf_{y} f(y) \le \inf_{y} \left(f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||^2 \right) = f(x) - \frac{1}{2L} ||\nabla f(x)||^2$$

1.2 Descent Methods

Consider the following minimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$

where f is a convex differentiable function.

A general optimization algorithm is of the following form: Choose initial point x^0 and repeat $x^{k+1} = x^k + t_k d^k$, k = 0, 1, ...

What should we choose for d^k ? What should we choose for t_k ? For the first question, we want d^k to be a descent direction, that is

$$\langle d^k, \nabla f(x^k) \leq 0$$

Since f is convex, if $\langle \nabla f(x^k), t_k d^k \rangle > 0$, then $f(x^{k+1}) > f(x^k)$. Hence in order to for the function value to descent, we must have

$$\langle d^k, \nabla f(x^k) \leq 0$$

As for the second question, there are mainly three ways to select t_k .

Fixed step size: t_k is constant.

Exact line search

$$t_k = \operatorname{argmin}_{s>0} f(x + sd_k)$$

Backtracking line search: Choose $0 < \beta < 1$, initialize $t_k = 1$; take $t_k := \beta t_k$ until

$$f(x - t_k \nabla f(x)) < f(x) - \frac{1}{2} t_k ||\nabla f(x)||^2$$

1.3 Gradient descent

In gradient descent, we choose d_k to be $\nabla f(x_k)$. So $x^{k+1} = x^k - t_k \nabla f(x^k)$.

Proposition: Suppose f is a convex C^1 function and $\nabla f(x)$ is Lipschitz with parameter L. If the step size $t \leq \frac{1}{L}$, then the fixed size gradient descent satisfies

$$f(x^k) - f(x^*) \le \frac{1}{2kt} \|x^0 - x^*\|^2$$

Proof. Let $x^+ := x - t\nabla f(x)$. Then using quadratic upper bound, we have,

$$f(x^+) \le f(x) + \left(-t + \frac{Lt^2}{2}\right) \|\nabla f(x)\|^2 \le f(x) - \frac{t}{2} \|\nabla f(x)\|^2$$

Since f is convex, $f(x^*) \ge f(x) + \langle \nabla f(x), x^* - x \rangle$. Then

$$f(x^{+}) \leq f(x) - \frac{t}{2} \|\nabla f(x)\|^{2}$$

$$\leq f^{*} + \langle \nabla f(x), x - x^{*} \rangle - \frac{t}{2} \|\nabla f(x)\|^{2}$$

$$= f^{*} + \frac{1}{2t} \left(\|x - x^{*}\|^{2} - \|x - x^{*} - t\nabla f(x)\|^{2} \right)$$

$$= f^{*} + \frac{1}{2t} \left(\|x - x^{*}\|^{2} - \|x^{+} - x^{*}\|^{2} \right)$$

Summing the above, we get

$$\sum_{i=1}^{k} (f(x^{i}) - f^{*}) \leq \frac{1}{2t} \sum_{i=1}^{k} (\|x^{i-1} - x^{*}\|^{2} - \|x^{i} - x^{*}\|^{2})$$

$$= \frac{1}{2t} (\|x^{0} - x^{*}\|^{2} - \|x^{k} - x^{*}\|^{2})$$

$$\leq \frac{1}{2t} \|x^{0} - x^{*}\|^{2}$$

But $f(x^i)$ is decreasing, hence

$$f(x^{k}) - f^{*} \le \frac{1}{k} \sum_{i=1}^{k} (f(x^{i}) - f^{*}) \le \frac{1}{2kt} ||x^{0} - x^{*}||^{2}$$