Math4230 Exercise 3

- 1. Let C be a nonempty convex subset of \mathbb{R}^n . Let $f = (f_1, ..., f_m)$, where $f_i: C \to \mathbb{R}, \ i = 1, ..., m$, are convex functions, and let $g: \mathbb{R}^m \to \mathbb{R}$ be a convex function such that $g(u_1) \leq g(u_2)$, for all $u_1 \leq u_2$ in a convex set that contains $\{f(x)|x \in C\}$. Show that h defined by h(x) = g(f(x))is convex over C. If in addition, m = 1, g is strictly increasing and f is strictly convex, show that h is also strictly convex.
- 2. Show that the following functions are convex:
 - (a) $f_1(x) = \ln(e^{x_1} + \dots + e^{x_n})$, where $x \in \mathbb{R}^n$.

 - (b) $f_2(x) = ||x||^p$ with $p \ge 1$ (c) $f_3(x) = e^{x^T A x}$, where A is a positive semidefinite symmetric $n \times n$ matrix
- 3. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a differentiable function. We say that f is strongly convex with coefficient α if

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge \alpha ||x - y||^2, \forall x, y \in \mathbb{R}^n,$$

where α is some positive scalar.

- (a) Show that if f is strongly convex with coefficient α , then f is strictly convex.
- (b) Assume that f is twice continuously differentiable. Show that strongly convexity of f with coefficient α is equivalent to the positive semi definiteness of $\nabla^2 f(x) - \alpha I$ for every $x \in \mathbb{R}^n$, where I is the identity matrix.
- 4. We say that $f: \mathbb{R}^n \to \mathbb{R}$ is positively homogeneous if $f(\alpha x) = \alpha f(x)$ for all $\alpha > 0$, and that f is subadditive if $f(x+y) \leq f(x) + f(y)$ for all $x, y \in \mathbb{R}^n$. Show that a positively homogeneous function is convex if and only if it is subadditive.