1 Convex and Affine Hulls

Given $x_1, x_2, ..., x_k \in \mathbb{R}^n$, a convex combination of $x_1, x_2, ..., x_k$ is a point of the form

$$
\sum_{i=1}^{m} \alpha_i x_i
$$
, where $\alpha_i \ge 0$ and
$$
\sum_{i=1}^{m} \alpha_i = 1
$$
.

An affine combination of $x_1, x_2, ..., x_k$ is a point of the form

$$
\sum_{i=1}^{m} \alpha_i x_i
$$
, where
$$
\sum_{i=1}^{m} \alpha_i = 1
$$
.

The *convex hull* of a set X, denoted by $conv(X)$, is the intersection of all convex sets containing X.

The *affine hull* of a set X, denoted by $\text{aff}(X)$, is the intersection of all affine sets containing X.

It is simple to verify that the $conv(X)$ is equal to the set of all convex combination of elements in X, while $aff(X)$ is equal to the set of all affine combination of elements in X.

The cone generated by a set X is the set of all nonnegative combination of elements in X. A nonnegative (positive) combination of $x_1, x_2, ..., x_m$ is of the form

$$
\sum_{i=1}^{m} \alpha_i x_i, \text{ where } \alpha_i \ge 0 \ (\alpha_i > 0).
$$

2 Caratheodory's Theorem

Theorem: (Caratheodory's Theorem) Let X be a nonempty subset of \mathbb{R}^n .

- 1. Every nonzero vector of $cone(X)$ can be represented as a positive combination of linearly independent vectors from X.
- 2. Every vector from $conv(X)$ can be represented as a convex combination of at most $n+1$ vectors from X.

Proof. 1) Let $x \in \text{cone}(X)$ and $x \neq 0$. Suppose m is the smallest integer such that x is of the form $\sum_{i=1}^{m} \alpha_i x_i$, where $\alpha_i > 0$ and $x_i \in X$.

Suppose that x_i are not linearly independent. Therefore, there exist λ_i with at least one λ_i positive, such that $\sum_{i=1}^m \lambda_i x_i = 0$.

Consider $\overline{\gamma}$, the largest γ such that $\alpha - \gamma \lambda_i \geq 0$ for all *i*.

Then $\sum_{i=1}^{m} (\alpha_i - \overline{\gamma} \lambda)x_i$ is a representation of x as a positive combination of less than m vectors, contradiction. Hence, x_i are linearly independent.

2) Consider $Y = \{(x, 1) : x \in X\}$. Let $x \in \text{conv}(X)$. Then $x = \sum_{i=1}^{m} \alpha_i x_i$, where $\sum_{i=1}^{m} \alpha_i = 1$, so $(x, 1) \in \text{cone}(Y)$.

By 1), $(x, 1) = \sum_{i=1}^{l} \alpha'_i(x_i, 1)$, where $\alpha_i > 0$. Also, $(x_1, 1), ..., (x_l, 1)$ are linearly independent vectors in \mathbb{R}^{n+1} (at most $n+1$). Hence, $x = \sum_{i=1}^{l} \alpha'_i x_i$,
 $\sum_{i=1}^{m} \alpha'_i = 1$ $_{i=1}^{m} \alpha'_{i} = 1$

I am sorry for the confusion in the tutorial, I hope this notes will be more clear to you.