THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050C Mathematical Analysis I Tutorial 9 (March 25)

Definition. Let $A \subseteq \mathbb{R}$, let $f : A \to \mathbb{R}$ and let $c \in A$.

- We say that f is **continuous at** c if, given any $\varepsilon > 0$, there exists $\delta > 0$ such that for all $x \in A$ satisfying $|x c| < \delta$, then $|f(x) f(c)| < \delta$.
- Let B ⊆ A. We say that f is continuous on B if f is continuous at every point of B.

Remarks. (1) We do not assume that c is a cluster point of A.

Case 1: If $c \in A$ is a cluster point of A, then f is continuous at $c \iff \lim_{x \to c} f = f(c)$.

Case 2: If $c \in A$ is not a cluster point of A, then f is automatically continuous at c.

- (2) "f is continuous on B" and " $f|_B$ is continuous" are different.
- **Example 1.** (a) The function $g(x) \coloneqq \sin(1/x)$ for $x \neq 0$ does not have a limit at x = 0. Thus there is no value that we can assign at x = 0 to obtain a continuous extension of g at x = 0.
- (b) Let $f(x) \coloneqq x \sin(1/x)$ for $x \neq 0$. If we define $F \colon \mathbb{R} \to \mathbb{R}$ by

$$F(x) \coloneqq \begin{cases} 0 & \text{for } x = 0, \\ x \sin(1/x) & \text{for } x \neq 0, \end{cases}$$

then F is continuous at x = 0.

Example 2. Show that the sine function is continuous on \mathbb{R} .

Suppose $A \subseteq \mathbb{R}$, $f : A \to \mathbb{R}$ and $c \in A$.

Sequential Criterion for Continuity. f is continuous at c if and only if for every sequence (x_n) in A that converges to c, the sequence $(f(x_n))$ converges to f(c).

Discontinuity Criterion. f is discontinuous at c if and only if there is a sequence (x_n) in A that converges to c but the sequence $(f(x_n))$ does not converge to f(c).

Example 3. Determine the points of continuity of the function $f(x) := [1/x], x \neq 0$. Here $[\cdot]$ is the greatest integer function defined by

$$[x] := \sup\{n \in \mathbb{Z} : n \le x\}.$$

Solution. First we show that f is discontinuous at each 1/m, $m \in \mathbb{Z} \setminus \{0\}$. Let $x_n = (m - \frac{1}{2n})^{-1}$ for $n \ge 1$. Then $\lim(x_n) = 1/m$. However, $f(x_n) = [m - \frac{1}{2n}] = m - 1$, so that $\lim f(x_n) = m - 1 \ne m = f(1/m)$.

By discontinuity criterion, f is discontinuous at 1/m.

Next we show that f is continuous at each $c \in \mathbb{R} \setminus (\{0\} \cup \{1/m : m \in \mathbb{Z} \setminus \{0\}\})$. Observe that, $\delta := \min\{1/c - [1/c], [1/c] + 1 - 1/c\}/2$ satisfies

$$\left|\frac{1}{x} - \frac{1}{c}\right| < \delta \implies \left[\frac{1}{x}\right] = \left[\frac{1}{c}\right].$$

Let $\varepsilon > 0$ be given. Take $\delta' \coloneqq \min\{|c|/2, \delta|c|^2/2\}$. If $x \in \mathbb{R} \setminus \{0\}$ and $|x - c| < \delta'$, then |x| > |c|/2, and

$$\left|\frac{1}{x} - \frac{1}{c}\right| = \frac{|x - c|}{|x||c|} < \frac{2}{|c|^2}|x - c| < \frac{2\delta'}{|c|^2} \le \delta,$$

so that

$$|f(x) - f(c)| = \left| \left[\frac{1}{x} \right] - \left[\frac{1}{c} \right] \right| = 0 < \varepsilon.$$

Hence f is continuous at c.

Classwork

1. Determine the points of continuity of the function $g(x) \coloneqq x[x]$.

Solution. First we show that g is discontinuous at each $m \in \mathbb{Z} \setminus \{0\}$. Let $x_n = m - \frac{1}{2n}$ for $n \ge 1$. Then $\lim(x_n) = m$. However, $g(x_n) = (m - \frac{1}{2n})(m - 1)$, so that $\lim g(x_n) = m(m - 1) \ne m^2 = f(m)$.

By discontinuity criterion,
$$g$$
 is discontinuous at m .

Next we show that g is continuous at 0. Note that

$$g(x) = \begin{cases} -x & \text{if } -1 < x < 0\\ 0 & \text{if } 0 \le x < 1. \end{cases}$$

So $|g(x) - g(0)| \le |x|$ for $x \in (-1, 1)$, and g is thus continuous at 0. Finally we show that g is continuous on $\bigcup_{m \in \mathbb{Z}} (m, m+1)$. Fix $c \in (m, m+1)$. Then

 $|g(x) - g(c)| = |x \cdot m - c \cdot m| = |m||x - c|$ for $x \in (m, m + 1)$.

The continuity of g at c follows immediately.

- 2. Give an example for each of the following:
 - (a) $f : \mathbb{R} \to \mathbb{R}$ is continuous everywhere except at one point.
 - (b) $f : \mathbb{R} \to \mathbb{R}$ is discontinuous everywhere.
 - (c) $f : \mathbb{R} \to \mathbb{R}$ is continuous exactly at one point.
 - (d) $f : \mathbb{R} \to \mathbb{R}$ is continuous on $\mathbb{R} \setminus \mathbb{Q}$ but distontinuous on \mathbb{Q} .