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Monotone Convergence Theorem. A monotone sequence of real numbers is conver-
gent if and only if it is bounded. Furthermore,

(a) If (xn) is a bounded increasing sequence, then lim(xn) = sup{xn : n ∈ N}.

(b) If (yn) is a bounded decreasing sequence, then lim(yn) = inf{yn : n ∈ N}.

Example 1. Let Z = (zn) be the sequence of real numbers defined by

z1 := 1, zn+1 :=
√

2zn for n ∈ N.

Show that lim(zn) = 2.

Example 2 (Euler number e). Let en := (1 + 1/n)n for n ∈ N. Show that the sequence
E = (en) is bounded and increasing, hence convergent. The limit of this sequence is called
the Euler number, and it is denoted by e.

Example 3. Establish the convergence and find the limits of the following sequences.

(a) ((1 + 1/n)n+1)

(b)

((
1 +

1

n + 1

)n)
(c) ((1− 1/n)n)
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1. Let y1 :=
√
p, where p > 0, and yn+1 :=

√
p + yn for n ∈ N. Show that (yn)

converges and find the limit. (Hint: 1 + 2
√
p is one upper bound.)

Solution . Note y2 =
√
p +
√
p >

√
p = y1. Suppose yk+1 > yk for some k ∈ N.

Then
yk+2 =

√
p + yk+1 >

√
p + yk = yk+1.

By induction, yn+1 > yn for all n ∈ N.

Note y1 =
√
p < 1 + 2

√
p. Suppose yk < 1 + 2

√
p for some k ∈ N. Then

yk+1 =
√
p + yk <

√
p + 1 + 2

√
p =

√
(1 +

√
p)2 < 1 + 2

√
p.

By induction, yn < 1 + 2
√
p. for all n ∈ N.

The sequence (yn) is thus increasing and bounded above. By Monotone Convergence
Theorem, y := lim(yn) exists. Since yn+1 =

√
p + yn, we have

y =
√
p + y =⇒ y2 − y − p = 0 =⇒ y =

1

2

(
1±

√
1 + 4p

)
.

Since yn > 0 for all n ∈ N, we have y ≥ 0 and hence y =
1

2

(
1 +
√

1 + 4p
)
. J

2. Let bn = 1 +
1

1!
+ · · · + 1

n!
for n ∈ N. Show that (bn) is convergent. Furthermore,

show that
lim(bn) = lim(en) = e.

Solution . It is easy to see that (bn) is increasing. In Example 2, it is shown that
en < bn < 3 for n ∈ N. Hence, by Monotone Convergence Theorem, (bn) converges.
Let ` = lim(bn). Then e ≤ `. On the other hand, fix N ∈ N. For n ≥ N , we have

en ≥ 1 + 1 +
1

2!

(
1− 1

n

)
+ · · ·+ 1

N !

(
1− 1

n

)
· · ·
(

1− N − 1

n

)
.

Passing n→∞, we get e ≥ bN . Since N is arbitrary, it implies that e ≥ `. Therefore
e = `. J


