THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050C Mathematical Analysis I Tutorial 4 (February 18)

Limit Theorems

Theorem 1. Let $X = (x_n)$, $Y = (y_n)$ and $Z = (z_n)$ be sequences of real numbers that converge to x, y and z, respectively.

- (a) Let $c \in \mathbb{R}$. Then the sequences $X+Y, X-Y, X \cdot Y$, and cX converge to x+y, x-y, xy, and cx, respectively.
- (b) Suppose further that $z_n \neq 0$ for all $n \in \mathbb{N}$, and $z \neq 0$. Then the sequence X/Z converges to x/z.

Example 1. Apply the above theorem to show the following limits.

(a)
$$\lim\left(\frac{2n+1}{n}\right) = 2.$$

- (b) $\lim\left(\frac{2n+1}{n+5}\right) = 2.$
- (c) $\lim \left(\frac{2n}{n^2+1}\right) = 0.$

Theorem 2. Let the sequence $X = (x_n)$ converge to x. Then the sequence $(|x_n|)$ of absolute values converges to |x|. That is, if $x = \lim(x_n)$, then $|x| = \lim(|x_n|)$.

Theorem 3. Let $X = (x_n)$ be a sequence of real numbers that converges to x and suppose that $x_n \ge 0$. Then the sequence $(\sqrt{x_n})$ of positive square roots converges and $\lim(\sqrt{x_n}) = \sqrt{x}$.

Classwork

- 1. If a > 0 and b > 0, show that $\lim \left(\sqrt{(n+a)(n+b)} n\right) = (a+b)/2$.
- 2. Let (x_n) be a sequence of real numbers that converges to x. Show that, for any integer $m \ge 2$, $\lim(\sqrt[m]{|x_n|}) = \sqrt[m]{|x|}$.

Solution. Let $m \ge 2$ be an integer. Note that, for $a, b \ge 0$, we have

$$b^m - a^m = (b - a)(b^{m-1} + b^{m-2}a + b^{m-3}a^2 + \dots + a^{m-1}),$$

and hence

$$|b^m - a^m| \ge a^{m-1}|b - a|.$$

Thus,

$$\left|\sqrt[m]{|x_n|} - \sqrt[m]{|x|}\right| \le \begin{cases} \sqrt[m]{|x_n|} & \text{if } x = 0\\ \frac{1}{(\sqrt[m]{|x|})^{m-1}} |x_n - x| & \text{if } x \neq 0 \end{cases}$$

We can then argue as in the proof of Theorem 3 to show that $\lim(\sqrt[m]{|x_n|}) = \sqrt[m]{|x|}$.

3. Let (x_n) be a sequence of real numbers. Define

$$s_n = \frac{x_1 + x_2 + \dots + x_n}{n}$$
 for all $n \in \mathbb{N}$.

If $\lim(x_n) = 0$, show that $\lim(s_n) = 0$.

Solution. We separate s_n into two parts:

$$s_n = \frac{x_1 + \dots + x_m}{n} + \frac{x_{m+1} + \dots + x_n}{n}$$
 for $1 \le m < n$.

Since (x_n) is convergent, it is bounded, so we can find M > 0 such that

$$|x_n| \le M$$
 for all $n \in \mathbb{N}$.

Let $\varepsilon > 0$ be given. Since $\lim(x_n) = 0$, there exists $m \in \mathbb{N}$ such that

$$|x_n| < \varepsilon/2$$
 for all $n \ge m$.

By Archimedean Property, choose $N \in \mathbb{N}$ such that $N > \max\left\{\frac{mM}{\varepsilon/2}, m\right\}$. Now, for $n \ge N$, we have

$$|s_n| \leq \frac{|x_1| + \dots + |x_m|}{n} + \frac{|x_{m+1}| + \dots + |x_n|}{n}$$
$$< \frac{mM}{n} + \frac{(n-m)\varepsilon/2}{n}$$
$$< \varepsilon/2 + \varepsilon/2$$
$$= \varepsilon.$$

Hence $\lim(s_n) = 0$.