THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050C Mathematical Analysis I Tutorial 4 (February 18)

Limit Theorems

Theorem 1. Let $X = (x_n)$, $Y = (y_n)$ and $Z = (z_n)$ be sequences of real numbers that converge to x, y and z, respectively.

- (a) Let $c \in \mathbb{R}$. Then the sequences $X + Y, X Y, X \cdot Y$, and cX converge to $x+y, x-y, xy$, and cx, respectively.
- (b) Suppose further that $z_n \neq 0$ for all $n \in \mathbb{N}$, and $z \neq 0$. Then the sequence X/Z converges to x/z .

Example 1. Apply the above theorem to show the following limits.

(a)
$$
\lim_{n} \left(\frac{2n+1}{n} \right) = 2.
$$

(b) $\lim_{n \to \infty} \left(\frac{2n+1}{n+5} \right)$ $= 2.$

(c)
$$
\lim \left(\frac{2n}{n^2 + 1} \right) = 0.
$$

Theorem 2. Let the sequence $X = (x_n)$ converge to x. Then the sequence $(|x_n|)$ of absolute values converges to |x|. That is, if $x = \lim(x_n)$, then $|x| = \lim(|x_n|)$.

Theorem 3. Let $X = (x_n)$ be a sequence of real numbers that converges to x and suppose that $x_n \geq 0$. Then the sequence $(\sqrt{x_n})$ of positive square roots converges and $\lim_{n \to \infty} (\sqrt{x_n}) =$ \sqrt{x} .

Classwork

- 1. If $a > 0$ and $b > 0$, show that $\lim_{b \to \infty} (\sqrt{(n + a)(n + b)} n) = (a + b)/2$.
- 2. Let (x_n) be a sequence of real numbers that converges to x. Show that, for any integer $m \geq 2$, $\lim_{n \to \infty} (\sqrt[m]{|x_n|}) = \sqrt[m]{|x|}$.

Solution. Let $m \geq 2$ be an integer. Note that, for $a, b \geq 0$, we have

$$
bm - am = (b - a)(bm-1 + bm-2a + bm-3a2 + \dots + am-1),
$$

and hence

$$
|b^m - a^m| \ge a^{m-1}|b - a|.
$$

Thus,

$$
\left|\sqrt[m]{|x_n|} - \sqrt[m]{|x|}\right| \le \begin{cases} \sqrt[m]{|x_n|} & \text{if } x = 0, \\ \frac{1}{(\sqrt[m]{|x|})^{m-1}} |x_n - x| & \text{if } x \neq 0. \end{cases}
$$

We can then argue as in the proof of Theorem 3 to show that $\lim_{n \to \infty} (\sqrt[m]{|x_n|}) = \sqrt[m]{|x|}$. $\overline{\blacktriangleleft}$

3. Let (x_n) be a sequence of real numbers. Define

$$
s_n = \frac{x_1 + x_2 + \dots + x_n}{n} \quad \text{for all } n \in \mathbb{N}.
$$

If $\lim(x_n) = 0$, show that $\lim(s_n) = 0$.

Solution. We separate s_n into two parts:

$$
s_n = \frac{x_1 + \dots + x_m}{n} + \frac{x_{m+1} + \dots + x_n}{n} \quad \text{for } 1 \le m < n.
$$

Since (x_n) is convergent, it is bounded, so we can find $M > 0$ such that

$$
|x_n| \le M \qquad \text{for all } n \in \mathbb{N}.
$$

Let $\varepsilon > 0$ be given. Since $\lim(x_n) = 0$, there exists $m \in \mathbb{N}$ such that

$$
|x_n| < \varepsilon/2 \qquad \text{for all } n \ge m.
$$

By Archimedean Property, choose $N \in \mathbb{N}$ such that $N > \max \left\{ \frac{mM}{n} \right\}$ $\varepsilon/2$ $, m$. Now, for $n\geq N,$ we have

$$
|s_n| \le \frac{|x_1| + \dots + |x_m|}{n} + \frac{|x_{m+1}| + \dots + |x_n|}{n}
$$

$$
< \frac{mM}{n} + \frac{(n-m)\varepsilon/2}{n}
$$

$$
< \varepsilon/2 + \varepsilon/2
$$

$$
= \varepsilon.
$$

Hence $\lim(s_n) = 0$.