MATH2050A HW6 Solution

- 6. Let $\epsilon > 0$ be given. Since g is continuous at b, there exists $\delta > 0$ s.t. for all $|y-b| < \delta$, $|g(y) g(b)| < \epsilon$. Also, $\lim_{x \to c} f(x) = b$ implies there exists $\delta_x > 0$ s.t. for all $0 < |x-c| < \delta_x$, $|f(x)-b| < \delta$. This implies $|g(f(x)) g(b)| < \epsilon$. Therefore, $\lim_{x \to c} g \circ f = g(b)$.
- 10. $c \in P$ implies f(c) > 0. Take $\epsilon = f(c)/10 > 0$, by the definition of continuity of f at c, there exists $\delta > 0$ s.t. if $x \in V_{\delta}(c)$, |f(x) f(c)| < f(c)/10. In particular, f(x) > 9f(c)/10 > 0 and $V_{\delta}(c) \subseteq P$ as desired

Remark. This question is a rephrase of HW5 question 7.

15. For $f(x) \ge g(x), \frac{1}{2}(f(x)+g(x))+\frac{1}{2}|f(x)-g(x)| = \frac{1}{2}(f(x)+g(x))+\frac{1}{2}(f(x)-g(x)) = f(x) = \sup\{f(x), g(x)\} = h(x).$ For $f(x) < g(x), \frac{1}{2}(f(x)+g(x))+\frac{1}{2}|f(x)-g(x)| = \frac{1}{2}(f(x)+g(x))+\frac{1}{2}(g(x)-f(x)) = g(x) = \sup\{f(x), g(x)\} = h(x).$

Since f, g are continuous at c, so as f + g, f - g and |f - g|. Thus h is continuous at c.