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1 Compact Sets in R

Throughout this section, let (xn) be a sequence in R. Recall that a subsequence (xnk
)∞k=1

of (xn) means that (nk)
∞
k=1 is a sequence of positive integers satisfying n1 < n2 < · · · <

nk < nk+1 < · · · , that is, such sequence (nk) can be viewed as a strictly increasing function
n : k ∈ {1, 2, ..} 7→ nk ∈ {1, 2, ...}.
In this case, note that for each positive integer N , there is K ∈ N such that nK ≥ N and thus
we have nk ≥ N for all k ≥ K.

Let us first recall the following two important theorems in real line.

Theorem 1.1 Nested Intervals Theorem Let (In := [an, bn]) be a sequence of closed and
bounded intervals. Suppose that it satisfies the following conditions.

(i) : I1 ⊇ I2 ⊇ I3 ⊇ · · · .

(ii) : limn(bn − an) = 0.

Then there is a unique real number ξ such that
⋂∞

n=1 In = {ξ}.

Proof: See [1, Theorem 2.5.2, Theorem 2.5.3]. ✷

Theorem 1.2 (Bolzano-Weierstrass Theorem) Every bounded sequence in R has a con-
vergent subsequence.

Proof: See [1, Theorem 3.4.8]. ✷

Definition 1.3 A subset A of R is said to be compact (more precise, sequentially compact) if
every sequence in A has a convergent subsequence with the limit in A.

We are now going to characterize the compact subsets of R. The following is an important
notation in mathematics.

Definition 1.4 A subset A is said to be closed in R if it satisfies the condition:

if (xn) is a sequence in A and lim xn exists, then lim xn ∈ A.

Example 1.5 (i) {a}; [a, b]; [0, 1] ∪ {2}; N; the empty set ∅ and R all are closed subsets of
R.
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(ii) (a, b) and Q are not closed.

The following Proposition is one of the basic properties of a closed subset which can be directly
shown by the definition. So, the proof is omitted here.

Proposition 1.6 Let A be a subset of R. The following statements are equivalent.

(i) A is closed.

(ii) For each element x ∈ R \ A, there is δx > 0 such that (x− δx, x+ δx) ∩A = ∅.

The following is an important characterization of a compact set in R. Warning: this result is
not true for the so-called metric spaces in general.

Theorem 1.7 Let A be a closed subset of R. Then the following statements are equivalent.

(i) A is compact.

(ii) A is closed and bounded.

Proof: It is clear that the result follows if A = ∅. So, we assume that A is non-empty.
For showing (i) ⇒ (ii), assume that A is compact.
We first claim that A is closed. Let (xn) be a sequence in A. Then by the compactness of A,
there is a convergent subsequence (xnk

) of (xn) with limk xnk
∈ A. So, if (xn) is convergent,

then limn xn = limk xnk
∈ A. Therefore, A is closed.

Next, we are going to show the boundedness of A. Suppose that A is not bounded. Fix an
element x1 ∈ A. Since A is not bounded, we can find an element x2 ∈ A such that |x2−x1| > 1.
Similarly, there is an element x3 ∈ A such that |x3 − xk| > 1 for k = 1, 2. To repeat the same
step, we can obtain a sequence (xn) in A such that |xn − xm| > 1 for m 6= n. From this,
we see that the sequence (xn) does not have a convergent subsequence. In fact, if (xn) has a
convergent subsequence (xnk

). Put L := limk xnk
. Then we can find a pair of sufficient large

positive integers p and q with p 6= q such that |xnp − L| < 1/2 and |xnq − L| < 1/2. This
implies that |xnp − xnq | < 1. It leads to a contradiction because |xnp − xnq | > 1 by the choice
of the sequence (xn). Thus, A is bounded.
It remains to show (ii) ⇒ (i). Suppose that A is closed and bounded.
Let (xn) be a sequence in A. Thus, (xn). Then the Bolzano-Weierstrass Theorem assures that
there is a convergent subsequence (xnk

). Then by the closeness of A, limk xnk
∈ A. Thus A is

compact.
The proof is finished.
✷

2 Appendix: Compact sets in R, Part 2

For convenience, we call a collection of open intervals {Jα : α ∈ Λ} an open intervals cover
of a given subset A of R, where Λ is an arbitrary non-empty index set, if each Jα is an open
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interval (not necessary bounded) and

A ⊆
⋃

α∈Λ

Jα.

Theorem 2.1 Heine-Borel Theorem: Any closed and bounded interval [a, b] satisfies the
following condition:

(HB) Given any open intervals cover {Jα}α∈Λ of [a, b], we can find finitely many Jα1
, .., JαN

such that [a, b] ⊆ Jα1
∪ · · · ∪ JαN

Proof: Suppose that [a, b] does not satisfy the above Condition (HB). Then there is an open
intervals cover {Jα}α∈Λ of [a, b] but it it has no finite sub-cover. Let I1 := [a1, b1] = [a, b] and
m1 the mid-point of [a1, b1]. Then by the assumption, [a1,m1] or [m1, b1] cannot be covered
by finitely many Jα’s. We may assume that [a1,m1] cannot be covered by finitely many Jα’s.
Put I2 := [a2, b2] = [a1,m1]. To repeat the same steps, we can obtain a sequence of closed and
bounded intervals In = [an, bn] with the following properties:

(a) I1 ⊇ I2 ⊇ I3 ⊇ · · · · · · ;

(b) limn(bn − an) = 0;

(c) each In cannot be covered by finitely many Jα’s.

Then by the Nested Intervals Theorem, there is an element ξ ∈
⋂

n In such that limn an =
limn bn = ξ. In particular, we have a = a1 ≤ ξ ≤ b1 = b. So, there is α0 ∈ Λ such that ξ ∈ Jα0

.
Since Jα0

is open, there is ε > 0 such that (ξ − ε, ξ + ε) ⊆ Jα0
. On the other hand, there is

N ∈ N such that aN and bN in (ξ − ε, ξ + ε) because limn an = limn bn = ξ. Thus we have
IN = [aN , bN ] ⊆ (ξ − ε, ξ + ε) ⊆ Jα0

. It contradicts to the Property (c) above. The proof is
finished.
✷

Remark 2.2 The assumption of the closeness and boundedness of an interval in Heine-Borel
Theorem is essential.
For example, notice that {Jn := (1/n, 1) : n = 1, 2...} is an open interval covers of (0, 1) but
you cannot find finitely many Jn’s to cover the open interval (0, 1).

The following is a very important feature of a compact set.

Theorem 2.3 Let A be a subset of R. Then the following statements are equivalent.

(i) For any open intervals cover {Jα}α∈Λ of A, we can find finitely many Jα1
, .., JαN

such
that A ⊆ Jα1

∪ · · · ∪ JαN
.

(ii) A is compact.

(iii) A is closed and bounded.
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Proof: The result will be shown by the following path

(i) ⇒ (ii) ⇒ (iii) ⇒ (i).

For (i) ⇒ (ii), assume that the condition (i) holds but A is not compact. Then there is a
sequence (xn) in A such that (xn) has no subsequent which has the limit in A. Put X =
{xn : n = 1, 2, ...}. Then X is infinite. Also, for each element a ∈ A, there is δa > 0 such that
Ja := (a−δa, a+δa)∩X is finite. Indeed, if there is an element a ∈ A such that (a−δ, a+δ)∩A
is infinite for all δ > 0, then (xn) has a convergent subsequence with the limit a. On the other
hand, we have A ⊆

⋃

a∈A Ja. Then by the compactness of A, we can find finitely many a1, ..., aN
such that A ⊆ Ja1 ∪ · · · ∪ JaN . So we have X ⊆ Ja1 ∪ · · · ∪ JaN . Then by the choice of Ja’s, X
must be finite. This leads to a contradiction. Therefore, A must be compact.
The implication (ii) ⇒ (iii) follows from Theorem 1.7 at once.
It remains to show (iii) ⇒ (i). Suppose that A is closed and bounded. Then we can find a closed
and bounded interval [a, b] such that A ⊆ [a, b]. Now let {Jα}α∈Λ be an open intervals cover of
A. Notice that for each element x ∈ [a, b] \A, there is δx > 0 such that (x− δx, x+ δx)∩A = ∅
since A is closed by using Proposition 1.6. If we put Ix = (x− δx, x+ δx) for x ∈ [a, b] \A, then
we have

[a, b] ⊆
⋃

α∈Λ

Jα ∪
⋃

x∈[a,b]\A

Ix.

Using the Heine-Borel Theorem 2.1, we can find finitely many Jα’s and Ix’s, say Jα1
, ..., JαN

and Ix1
, ..., IxK

, such that A ⊆ [a, b] ⊆ Jα1
∪ · · · ∪ JαN

∪ Ix1
∪ · · · ∪ IxK

. Note that Ix ∩A = ∅
for each x ∈ [a, b] \A by the choice of Ix. Therefore, we have A ⊆ Jα1

∪ · · · ∪ JαN
and hence A

is compact.
The proof is finished. ✷

Remark 2.4 In fact, the condition in Theorem 2.3(i) is the usual definition of a compact set
for a general topological space. More precise, if a set A satisfies the Definition 1.4, then A is
said to be sequentially compact. Theorem 2.3 tells us that the notation of the compactness and
the sequentially compactness are the same as in the case of a subset of R. However, these two
notation are different for a general topological space.

Strongly recommended: take the courses: MATH 3060; MATH3070 for the next step.

3 Continuous functions defined on compact sets

Throughout this section, let A be a non-empty subset of R and f : A → R a function defined
on A.

Proposition 3.1 Let f be a continuous function defined on a compact subset A of R. Then
f(A) is a compact subset of R.

Proof: Method I: By using Theorem 2.3 (i) ⇔ (iii), it suffices to show that f(A) is a closed
bounded subset of R.
Claim 1: f(A) is bounded.
Suppose not. Then for each positive integer n, there is an element xn ∈ A such that |f(xn)| > n.
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Since A is compact, there is a convergent subsequence (xnk
) with a := limk xnk

∈ A. This gives
limk f(xnk

) = f(a) because f is continuous on a and hence, (f(xnk
)) is a bounded sequence.

This leads to a contradiction to the choice of (xn) which satisfies |f(xnk
)| > nk for all k = 1, 2....

Claim 2: f(A) is a closed subset of R, that is, y ∈ f(A) whenever, a sequence (xn) in A
satisfying limn f(xn) = y.
In fact, there is a convergent subsequence (xk) with z := limk xk ∈ A by using the compactness
of A again. This gives y = limk f(xnk

) = f(z) ∈ f(A) as desired since f is continuous on A.
Method II: Alternatively, we are going to use Theorem 2.3 (i) ⇔ (ii).
Let {Ji}i∈I be an open interval covers of f(A). We may assume Ji ∩ f(A) 6= ∅ for each i ∈ I.
Notice that since Ji is an open interval and f is continuous, we see that if f(x) ∈ Ji, then we
can find δx > 0 such that f(z) ∈ Ji whenever z ∈ A with |z − x| < δx. Notice that we have
A ⊆

⋃

x∈A Jx, where Vx := (x − δx, x + δx) and hence, {Vx : x ∈ A} forms an open intervals
cover of A. By using the equivalence (i) ⇔ (ii) in Theorem 2.3, we can find finitely many
x1, ..., xn in A such that A ⊆ Vx1

∪ · · · ∪ Vxn . For each k = 1, .., n, then f(xk) ∈ Jik for some
ik ∈ I. Now if x ∈ A, then x ∈ Vxk

for some k = 1, ..., n. This gives f(x) ∈ Jik and thus,
f(A) ⊆ Ji1 ∪ · · · ∪ Jin . The proof is finished. ✷

Corollary 3.2 If f : A → R is a continuous injection and A is compact, then the inverse map
f−1 : f(A) → A is also continuous.

Proof: Let B = f(A) and g = f−1 : B → A. Suppose that g is not continuous at some b ∈ B.
Put a = g(b) ∈ A. Then there are η > 0 and a sequence (yn) in B such that lim yn = b but
|g(yn) − g(b)| ≥ η for all n. Let xn := g(yn) ∈ A. So, by the compactness of A, there is a
convergent subsequence (xnk

) of (xn) such that limk xnk
∈ A. Let a′ = limk xnk

. Then we have
f(a′) = limk f(xnk

) = limk ynk
= b. On the other hand, since |g(yn) − g(b)| ≥ η for all n, we

see that
|xnk

− a| = |g(ynk
)− g(b)| ≥ η > 0

for all k and hence |a′ − a| > 0. This implies that a 6= a′ but f(a′) = b = f(a). It contradicts
to f being injective.
The proof is finished. ✷

Remark 3.3 The assumption of the compactness in the last assertion of Proposition 3.2 is
essential. For example, consider A = [0, 1) ∪ [2, 3] and define f : A → R by

f(x) =

{

x if x ∈ [0, 1)

x− 1 if x ∈ [2, 3].

Then f(A) = [0, 2] and f is a continuous bijection from A onto [0, 2] but f−1 : [0, 2] → A is
not continuous at y = 1.

Example 3.4 By Proposition 3.2, it is impossible to find a continuous surjection from [0, 1]
onto (0, 1) since [0, 1] is compact but (0, 1) is not. Thus [0, 1] is not homeomorphic to (0, 1).

Proposition 3.5 Suppose that f is continuous on A. If A is compact, then there are points c
and b in A such that

f(c) = max{f(x) : x ∈ A} and f(b) = min{f(x) : x ∈ A}.
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Proof: By considering the function −f on A, it needs to show that f(c) = max{f(x) : x ∈ A}
for some c ∈ A.
Method I:
We first claim that f is bounded on A, that is, there is M > 0 such that |f(x)| ≤ M for
all x ∈ A. Suppose not. Then for each n ∈ N, we can find an ∈ A such that |f(an)| > n.
Recall that A is compact if and only if it is closed and bounded (see Theorem ??). So, (an)
is a bounded sequence in A. Then by the Bolzano-Weierstrass Theorem, there is a convergent
subsequence (ank

) of (an). Put a = limk ank
. Since A is closed and f is continuous, a ∈ A,

from this, it follows that f(a) = limk f(ank
). It is absurd because nk < |f(ank

)| → |f(a)| for
all k and nk → ∞. So f must be bounded. So L := sup{f(x) : x ∈ A} must exist by the
Axiom of Completeness.
It remains to show that there is a point c ∈ A such that f(c) = L. In fact, by the definition
of supremum, there is a sequence (xn) in A such that limn f(xn) = L. Then by the Bolzano-
Weierstrass Theorem again, there is a convergent subsequence (xnk

) of (xn) with limk xnk
∈ A.

If we put c := limk xnk
∈ A, then f(c) = limk f(xnk

) = L as desired. The proof is finished.
Method II:
We first claim that f is bounded above. Notice that for each x ∈ A, there is δx > 0 such that
f(y) < f(x) + 1 whenever y ∈ A with |x− y| < δx since f is continuous on A. Now if we put
Jx := (x−δx, x+δx) for each x ∈ A, then A ⊆

⋃

x∈A Jx. So, by the compactness ofA, we can find
finitely many x1, ..., xN in A such that A ⊆ Jx1

∪· · ·∪JxN
and it follows that for each x ∈ A, we

have f(x) < 1+f(xk) for some k = 1, ..., N . Now if we put M := max{1+f(x1), ..., 1+f(xN )},
then f is bounded above by M on A.
Put L := sup{f(x) : x ∈ A}. It remains to show that there is an element c ∈ A such that
f(c) = L. Suppose not. Notice that since f(x) ≤ L for all x ∈ A, we have f(x) < L for all
x ∈ A under this assumption. Therefore, by the continuity of f , for each x ∈ A, there are
εx > 0 and ηx > 0 such that f(y) < f(x) + εx < L whenever y ∈ A with |y − x| < δx. Put
Ix := (x−ηx, x+ηx). Then A ⊆

⋃

x∈A Ix. By the compactness of A again, A can be covered by
finitely many Ix1

, ..., IxN
. If we let L′ := max{f(x1)+εx1

, ..., f(xN )+εxN
}, then f(x) < L′ < L

for all x ∈ A. It contradicts to L being the least upper bound for the set {f(x) : x ∈ A}. The
proof is complete. ✷

Definition 3.6 We say that a function f is upper semi-continuous (resp. lower semi-continuous)
on A if for each element z ∈ A and for any ε > 0, there is δ > 0 such that f(x) < f(z) + ε
(resp. f(z)− ε < f(x)) whenever x ∈ A with |x− z| < δ.

Remark 3.7 (i) It is clear that a function is continuous if and only if it is upper semi-
continuous and lower semi-continuous. However, an upper semi-continuous function need
not be continuous. For example, define a function f : R → R by

f(x) =

{

1 if x ∈ [0, 1]

0 otherwise.

(ii) From the Method II above, we see that if f is upper semi-continuous (resp. lower
semi-continuous) on a compact set A, then the function f attains the supremum (resp.
infimum) on A.
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4 Uniform Continuous Functions

Definition 4.1 A function f : A → R is said to be uniformly continuous on A if for any ε > 0,
there is δ > 0 such that |f(x)− f(y)| < ε whenever x, y ∈ A with |x− y| < δ.

Remark 4.2 It is clear that if f is uniformly continuous on A, then it must be continuous on
A. However, the converse does not hold. For example, consider the function f : (0, 1] → R

defined by f(x) := 1/x. Then f is continuous on (0, 1] but it is not uniformly continuous on
(0, 1]. Notice that f is not uniformly continuous on A means that

there is ε > 0 such that for any δ > 0, there are x, y ∈ A with |x− y| < δ but |f(x)− f(y)| ≥ ε.

Notice that 1/x → ∞ as x → 0+. So if we let ε = 1, then for any δ > 0, we choose n ∈ N

such that 1/n < δ and thus we have |1/2n − 1/n| = 1/2n < δ but |f(1/n) − f(1/2n)| = n >
1 = ε. Therefore, f is not uniformly continuous on (0, 1].

Example 4.3 Let 0 < a < 1. Define f(x) = 1/x for x ∈ [a, 1]. Then f is uniformly continuous
on [a, 1]. In fact for x, y ∈ [a, 1], we have

|f(x)− f(y)| = |
1

x
−

1

y
| =

|x− y|

xy
≤

|x− y|

a2
.

So for any ε > 0, we can take 0 < δ < a2ε. Thus if x, y ∈ [a, 1] with |x− y| < δ, then we have
|f(x)− f(y)| < ε and hence f is uniformly continuous on [a, 1].

Proposition 4.4 If f is continuous on a compact set A, then f is uniformly continuous on
A.

Proof: Compactness argument:
Let ε > 0. Since f is continuous on A, then for each x ∈ A, there is δx > 0, such that
|f(y)−f(x)| < ε whenever y ∈ A with |y−x| < δx. Now for each x ∈ A, set Jx = (x− δx

2 , x+
δx
2 ).

Then A ⊆
⋃

x∈A Jx. By the compactness of A, there are finitely many x1, ..., xN ∈ A such

that A ⊆ Jx1
∪ · · · ∪ JxN

. Now take 0 < δ < min(
δx1
2 , ...,

δxN
2 ). Now for x, y ∈ A with

|x − y| < δ, then x ∈ Ixk
for some k = 1, .., N , from this it follows that |x − xk| <

δxk
2 and

|y−xk| ≤ |y−x|+|x−xk| ≤
δxk
2 +

δxk
2 = δxk

. So for the choice of δxk
, we have |f(y)−f(xk)| < ε

and |f(x)− f(xk)| < ε. Thus we have shown that |f(x)− f(y)| < 2ε whenever x, y ∈ A with
|x− y| < δ. The proof is finished.
Sequentially compactness argument:
Suppose that f is not uniformly continuous on A. Then there is ε > 0 such that for each
n = 1, 2, .., we can find xn and yn in A with |xn − yn| < 1/n but |f(xn) − f(yn)| ≥ ε. Notice
that by the sequentially compactness of A, (xn) has a convergent subsequence (xnk

) with
a := limk xnk

∈ A. Now applying sequentially compactness of A for the sequence (ynk
), then

(ynk
) contains a convergent subsequence (ynkj

) such that b := limj ynkj
∈ A. On the other

hand, we also have limj xnkj
= a. Since |xnkj

− ynkj
| < 1/nkj for all j, we see that a = b. This

implies that limj f(xnkj
) = f(a) = f(b) = limj f(ynkj

). This leads to a contradiction since we

always have |f(xnkj
)− f(ynkj

)| ≥ ε > 0 for all j by the choice of xn and yn above. The proof

is finished. ✷
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Proposition 4.5 Let f be a continuous function defined on a bounded subset A of R. Then
the following statements are equivalent.

(i): f is uniformly continuous on A.

(ii): There is a unique continuous function F defined on the closure A such that F (x) = f(x)
for all x ∈ A.

Proof: Notice that since A is bounded then so is A. This implies that A is compact. The Part
(ii) ⇒ (i) follows Proposition 4.4 at once.
The proof of Part (i) ⇒ (ii) is divided by the following assertions. Assume that f is uniformly
continuous on A.
Claim 1. If (xn) is a sequence in A and lim xn exists, then lim f(xn) exists.
It needs to show that (f(xn)) is a Cauchy sequence. Indeed, let ε > 0. Then by the uniform
continuity of f on A, there is δ > 0 such that |f(x)−f(y)| < ε whenever x, y ∈ A with |x−y| < δ.
Notice that (xn) is a Cauchy sequence since it is convergent. Thus, there is a positive integer
N such that |xm − xn| < δ for all m,n ≥ N . This implies that |f(xm) − f(xn)| < ε for all
m,n ≥ N and hence, Claim 1 follows.
Claim 2. If (xn) and (yn) both are convergent sequences in A and limxn = lim yn, then
lim f(xn) = lim f(yn).
By Claim 1, L := lim f(xn) and L′ = lim f(yn) both exist. For any ε > 0, let δ > 0 be found
as in Claim 1. Since limxn = lim yn, there is N ∈ N such that |xn − yn| < δ for all n ≥ N
and hence, we have |f(xn)− f(yn)| < ε for all n ≥ N . Taking n → ∞, we see that |L−L′| ≤ ε
for all ε > 0. So L = L′. Claim 2 follows.
Recall that an element x ∈ A if and only if there is a sequence (xn) in A converging to x.
Now for each x ∈ A, we define

F (x) := lim f(xn)

if (xn) is a sequence in A with limxn = x. It follows from Claim 1 and Claim 2 that F is a
well defined function defined on A and F (x) = f(x) for all x ∈ A.
So, it remains to show that F is continuous. Then F is a continuous extension of f to A as
desired.
Now suppose that F is not continuous at some point z ∈ A. Then there is ε > 0 such that for
any δ > 0, there is x ∈ A satisfying |x − z| < δ but |F (x) − F (z)| ≥ ε. Notice that for any
δ > 0 and if |x − z| < δ for some x ∈ A, then we can choose a sequence (xi) in A such that
limxi = x. Therefore, we have |xi − z| < δ and |f(xi) − F (z)| ≥ ε/2 for any i large enough.
Therefore, for any δ > 0, we can find an element x ∈ A with |x−z| < δ but |f(x)−F (z)| ≥ ε/2.
Now consider δ = 1/n for n = 1, 2.... This yields a sequence (xn) in A which converges to z
but |f(xn)− F (z)| ≥ ε/2 for all n. However, we have lim f(xn) = F (z) by the definition of F
which leads to a contradiction. Thus F is continuous on A.
Finally the uniqueness of such continuous extension is clear.
The proof is finished. ✷

Example 4.6 By using Proposition 4.5, the function f(x) := sin 1
x defined on (0, 1] cannot be

continuously extended to the set [0, 1].
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Definition 4.7 Let A be a non-empty subset of R. A function f : A → R is called a Lipschitz
if there is a constant C > 0 such that |f(x)− f(y)| ≤ C|x− y| for all x, y ∈ A. In this case.
Furthermore, if we can find such 0 < C < 1, then we call f a contraction.

It is clear that we have the following property.

Proposition 4.8 Every Lipschitz function is uniformly continuous on its domain.

Example 4.9 (i) : The sine function f(x) = sinx is a Lipschitz function on R since we
always have | sinx− sin y| ≤ |x− y| for all x, y ∈ R (by using the equation sinx− sin y =
2cos x+y

2 sin x−y
2 and the fact | sinx| ≤ |x| for all x ∈ R.)

(ii) : Define a function f on [0, 1] by f(x) = x sin(1/x) for x ∈ (0, 1] and f(0) = 0. Then f is
continuous on [0, 1] and thus f is uniformly continuous on [0, 1]. But notice that f is not
a Lipschitz function. In fact, for any C > 0, if we consider xn = 1

2nπ+(π/2) and yn = 1
2nπ ,

then |f(xn)− f(yn)| > C|xn − yn| if and only if

2

π
·
(2nπ + π

2 )(2nπ)

2nπ + π
2

= 4n > C.

Therefore, for any C > 0, there are x, y ∈ [0, 1] such that |f(x) − f(y)| > C|x − y| and
hence f is not a Lipschitz function on [0, 1].

Proposition 4.10 Let A be a non-empty closed subset of R. If f : A → A is a contraction,
then there is a fixed point of f , that is, there is a point a ∈ A such that f(a) = a.

Proof: Since f is a contraction on A, there is 0 < C < 1 such that |f(x) − f(y)| ≤ C|x− y|
for all x, y ∈ A. Fix x1 ∈ A. Since f(A) ⊆ A, we can inductively define a sequence (xn) in A
by xn+1 = f(xn) for n = 1, 2... Notice that we have

|xn+1 − xn| = |f(xn)− f(xn−1)| ≤ C|xn − xn−1|

for all n = 2, 3... This gives
|xn+1 − xn| ≤ Cn−1|x2 − x1|

for n = 2, 3, .... So, for any n, p = 1, 2.., we see that

|xn+p − xn| ≤

n+p−1
∑

i=n

|xi+1 − xi| ≤ |x2 − x1|

n+p−1
∑

i=n

Ci−1.

Since 0 < C < 1, for any ε > 0, there is N such that
∑n+p−1

i=n Ci−1 < ε for all n ≥ N
and p = 1, 2, ... Therefore, (xn) is a Cauchy sequence and thus the limit a := limn xn exists.
Since A is closed, we have a ∈ A and hence f is continuous at a. On the other hand, since
xn+1 = f(xn). Therefore, we have a = f(a) by taking n → ∞. The proof is finished. ✷

Remark 4.11 The Proposition 4.10 does not hold if f is not a contraction. For example, if
we consider f(x) = x− 1 for x ∈ R, then it is clear that |f(x)− f(y)| = |x − y| and f has no
fixed point in R.
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5 Continuous functions defined on intervals

Theorem 5.1 (Intermediate Value Theorem): Let f : [a, b] → R be a continuous func-
tion. Suppose that f(a) < z < f(b). Then there is c between a and b such that f(c) = z.

Proof: Notice that if we consider the function x ∈ [a, b] 7→ f(x)− z, then we may assume that
z = 0.
Method I: Let

S := {x ∈ [a, b] : f(x) ≤ 0}.

Notice that the set S is non-empty since a ∈ S and is bounded. Then by the axiom of
completeness, the supremum c := sup{x ∈ S} exists. Then c ∈ [a, b] and there is a sequence in
S such that xn → c. This, together with the continuity of f , imply that f(c) = limn f(xn) ≤ 0
since xn ∈ S. On the other hand, since b /∈ S, we see that c ∈ [a, b). Therefore, we can find a
sequence (yn) with c < yn < b for all n such that yn → c+ respectively. By using the continuity
of f again, we see that f(c) = limn f(yn) ≥ 0 because yn /∈ S. Therefore, f(c) = 0. The proof
is finished.
Method II: Put x1 = a and y1 = b. Now if f(a+b

2 ) = 0, then the result is obtained. If

f(a+b
2 ) > 0, then we set x2 = a and y2 = a+b

2 . Similarly, if f(a+b
2 ) < 0, then we set x2 = a+b

2
and y2 = b. To repeat the same procedure, if there are xN and yN such that f(xN+yN

2 ) = 0,
then the result is shown. Otherwise, we can find a decreasing sequence of closed and bounded
intervals [a, b] = [x1, y1] ⊇ [x2, y2] ⊇ · · · with lim(yn − xn) = 0 and f(xn) < 0 < f(yn) for all
n. Then by the Nested Intervals Theorem, we have

⋂

n[xn, yn] = {c} for some c ∈ [x1, y1] =
[a, b]. Moreover, we have limn xn = limn yn = c. Then by the continuity of f , we see that
f(c) = lim f(xn) = lim f(yn). Since f(xn) < 0 < f(yn) for all n, we have f(c) = 0. The proof
is finished. ✷

Remark 5.2 The assumption of the intervals in the Intermediate Value Theorem is essential.
For example, consider I = [0, 1) ∪ (2, 3] and define f : I → R by

f(x) =

{

x if x ∈ [0, 1)

x− 1 if x ∈ (2, 3].

Then f(0) < 1 < f(3) but 1 /∈ f(I).

Recall that a non-empty subset I of R is called an interval if it has one of the following forms.

(i) R.

(ii) (−∞, a] or [a,∞) or (−∞, a) or (a,∞) for some a ∈ R.

(iii) (a, b) or (a, b] or [a, b) or [a, b] for some a, b ∈ R with a < b.

Lemma 5.3 Let I be a non-empty subset of R. Suppose that there are different elements in I.
Then I is an interval if and only if for any a, b ∈ I with a < b, we have [a, b] ⊆ I.
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Corollary 5.4 Let f ; [a, b] → R. Suppose that M := sup{f(x) : x ∈ [a, b]} and m = inf{f(x) :
x ∈ [a, b]}. Then f([a, b]) = [m,M ].

Proof: Notice that if m = M , then f is a constant function and hence, the result is clearly
true.
Now suppose that m < M . It is clear that f([a, b]) ⊆ [m,M ] because m ≤ f(x) ≤ M for all
x ∈ [a, b]. For the converse inclusion, notice that since [a, b] is compact, there are x1 and x2
in [a, b] such that f(x1) = m and f(x2) = M . We may assume that x1 < x2. To apply the
Intermediate Value Theorem for the restriction of f on [x1, x2], we have [m,M ] ⊆ f([x1, x2]) ⊆
f([a, b]). The proof is finished. ✷

Corollary 5.5 Let I be an interval and let f : I → R be a continuous non-constant function.
Then f(I) is an interval.

Proof: Notice that by Lemma 5.3, it needs to show that for any c, d ∈ f(I) with c < d implies
that [c, d] ⊆ f(I). Suppose that a, b ∈ I with a < b satisfy f(a) = c and f(b) = d. Notice that
[a, b] ⊆ I because I is an interval. If we put M = supx∈[a,b] f(x) and m = infx∈[a,b] f(x), then
by Corollary 5.4, we have

[c, d] ⊆ [m,M ] = f([a, b]) ⊆ f(I).

The proof is finished. ✷

Example 5.6 It is impossible to find a continuous surjection from (a, b) onto (c, d) ∪ (e, f)
where d ≤ e.
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