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1 Compact Sets in R

Throughout this section, let (xn) be a sequence in R. Recall that a subsequence (xnk
)∞k=1

of (xn) means that (nk)
∞
k=1 is a sequence of positive integers satisfying n1 < n2 < · · · <

nk < nk+1 < · · · , that is, such sequence (nk) can be viewed as a strictly increasing function
n : k ∈ {1, 2, ..} 7→ nk ∈ {1, 2, ...}.
In this case, note that for each positive integer N , there is K ∈ N such that nK ≥ N and thus
we have nk ≥ N for all k ≥ K.

Let us first recall the following two important theorems in real line.

Theorem 1.1 Nested Intervals Theorem Let (In := [an, bn]) be a sequence of closed and
bounded intervals. Suppose that it satisfies the following conditions.

(i) : I1 ⊇ I2 ⊇ I3 ⊇ · · · .

(ii) : limn(bn − an) = 0.

Then there is a unique real number ξ such that
⋂∞
n=1 In = {ξ}.

Proof: See [1, Theorem 2.5.2, Theorem 2.5.3]. 2

Theorem 1.2 (Bolzano-Weierstrass Theorem) Every bounded sequence in R has a con-
vergent subsequence.

Proof: See [1, Theorem 3.4.8]. 2

Definition 1.3 A subset A of R is said to be compact (more precise, sequentially compact) if
every sequence in A has a convergent subsequence with the limit in A.

We are now going to characterize the compact subsets of R. The following is an important
notation in mathematics.

Definition 1.4 A subset A is said to be closed in R if it satisfies the condition:

if (xn) is a sequence in A and limxn exists, then limxn ∈ A.

Example 1.5 (i) {a}; [a, b]; [0, 1] ∪ {2}; N; the empty set ∅ and R all are closed subsets of
R.
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(ii) (a, b) and Q are not closed.

The following Proposition is one of the basic properties of a closed subset which can be directly
shown by the definition. So, the proof is omitted here.

Proposition 1.6 Let A be a subset of R. The following statements are equivalent.

(i) A is closed.

(ii) For each element x ∈ R \A, there is δx > 0 such that (x− δx, x+ δx) ∩A = ∅.

The following is an important characterization of a compact set in R. Warning: this result is
not true for the so-called metric spaces in general.

Theorem 1.7 Let A be a closed subset of R. Then the following statements are equivalent.

(i) A is compact.

(ii) A is closed and bounded.

Proof: It is clear that the result follows if A = ∅. So, we assume that A is non-empty.
For showing (i)⇒ (ii), assume that A is compact.
We first claim that A is closed. Let (xn) be a sequence in A. Then by the compactness of A,
there is a convergent subsequence (xnk

) of (xn) with limk xnk
∈ A. So, if (xn) is convergent,

then limn xn = limk xnk
∈ A. Therefore, A is closed.

Next, we are going to show the boundedness of A. Suppose that A is not bounded. Fix an
element x1 ∈ A. Since A is not bounded, we can find an element x2 ∈ A such that |x2−x1| > 1.
Similarly, there is an element x3 ∈ A such that |x3 − xk| > 1 for k = 1, 2. To repeat the same
step, we can obtain a sequence (xn) in A such that |xn − xm| > 1 for m 6= n. From this,
we see that the sequence (xn) does not have a convergent subsequence. In fact, if (xn) has a
convergent subsequence (xnk

). Put L := limk xnk
. Then we can find a pair of sufficient large

positive integers p and q with p 6= q such that |xnp − L| < 1/2 and |xnq − L| < 1/2. This
implies that |xnp − xnq | < 1. It leads to a contradiction because |xnp − xnq | > 1 by the choice
of the sequence (xn). Thus, A is bounded.
It remains to show (ii)⇒ (i). Suppose that A is closed and bounded.
Let (xn) be a sequence in A. Thus, (xn). Then the Bolzano-Weierstrass Theorem assures that
there is a convergent subsequence (xnk

). Then by the closeness of A, limk xnk
∈ A. Thus A is

compact.
The proof is finished.
2

2 Appendix: Compact sets in R, Part 2

For convenience, we call a collection of open intervals {Jα : α ∈ Λ} an open intervals cover
of a given subset A of R, where Λ is an arbitrary non-empty index set, if each Jα is an open
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interval (not necessary bounded) and

A ⊆
⋃
α∈Λ

Jα.

Theorem 2.1 Heine-Borel Theorem: Any closed and bounded interval [a, b] satisfies the
following condition:

(HB) Given any open intervals cover {Jα}α∈Λ of [a, b], we can find finitely many Jα1 , .., JαN

such that [a, b] ⊆ Jα1 ∪ · · · ∪ JαN

Proof: Suppose that [a, b] does not satisfy the above Condition (HB). Then there is an open
intervals cover {Jα}α∈Λ of [a, b] but it it has no finite sub-cover. Let I1 := [a1, b1] = [a, b] and
m1 the mid-point of [a1, b1]. Then by the assumption, [a1,m1] or [m1, b1] cannot be covered
by finitely many Jα’s. We may assume that [a1,m1] cannot be covered by finitely many Jα’s.
Put I2 := [a2, b2] = [a1,m1]. To repeat the same steps, we can obtain a sequence of closed and
bounded intervals In = [an, bn] with the following properties:

(a) I1 ⊇ I2 ⊇ I3 ⊇ · · · · · · ;

(b) limn(bn − an) = 0;

(c) each In cannot be covered by finitely many Jα’s.

Then by the Nested Intervals Theorem, there is an element ξ ∈
⋂
n In such that limn an =

limn bn = ξ. In particular, we have a = a1 ≤ ξ ≤ b1 = b. So, there is α0 ∈ Λ such that ξ ∈ Jα0 .
Since Jα0 is open, there is ε > 0 such that (ξ − ε, ξ + ε) ⊆ Jα0 . On the other hand, there is
N ∈ N such that aN and bN in (ξ − ε, ξ + ε) because limn an = limn bn = ξ. Thus we have
IN = [aN , bN ] ⊆ (ξ − ε, ξ + ε) ⊆ Jα0 . It contradicts to the Property (c) above. The proof is
finished.
2

Remark 2.2 The assumption of the closeness and boundedness of an interval in Heine-Borel
Theorem is essential.
For example, notice that {Jn := (1/n, 1) : n = 1, 2...} is an open interval covers of (0, 1) but
you cannot find finitely many Jn’s to cover the open interval (0, 1).

The following is a very important feature of a compact set.

Theorem 2.3 Let A be a subset of R. Then the following statements are equivalent.

(i) For any open intervals cover {Jα}α∈Λ of A, we can find finitely many Jα1 , .., JαN such
that A ⊆ Jα1 ∪ · · · ∪ JαN .

(ii) A is compact.

(iii) A is closed and bounded.
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Proof: The result will be shown by the following path

(i)⇒ (ii)⇒ (iii)⇒ (i).

For (i) ⇒ (ii), assume that the condition (i) holds but A is not compact. Then there is a
sequence (xn) in A such that (xn) has no subsequent which has the limit in A. Put X =
{xn : n = 1, 2, ...}. Then X is infinite. Also, for each element a ∈ A, there is δa > 0 such that
Ja := (a−δa, a+δa)∩X is finite. Indeed, if there is an element a ∈ A such that (a−δ, a+δ)∩A
is infinite for all δ > 0, then (xn) has a convergent subsequence with the limit a. On the other
hand, we have A ⊆

⋃
a∈A Ja. Then by the compactness of A, we can find finitely many a1, ..., aN

such that A ⊆ Ja1 ∪ · · · ∪ JaN . So we have X ⊆ Ja1 ∪ · · · ∪ JaN . Then by the choice of Ja’s, X
must be finite. This leads to a contradiction. Therefore, A must be compact.
The implication (ii)⇒ (iii) follows from Theorem 1.7 at once.
It remains to show (iii)⇒ (i). Suppose that A is closed and bounded. Then we can find a closed
and bounded interval [a, b] such that A ⊆ [a, b]. Now let {Jα}α∈Λ be an open intervals cover of
A. Notice that for each element x ∈ [a, b] \A, there is δx > 0 such that (x− δx, x+ δx)∩A = ∅
since A is closed by using Proposition 1.6. If we put Ix = (x− δx, x+ δx) for x ∈ [a, b]\A, then
we have

[a, b] ⊆
⋃
α∈Λ

Jα ∪
⋃

x∈[a,b]\A

Ix.

Using the Heine-Borel Theorem 2.1, we can find finitely many Jα’s and Ix’s, say Jα1 , ..., JαN

and Ix1 , ..., IxK , such that A ⊆ [a, b] ⊆ Jα1 ∪ · · · ∪ JαN ∪ Ix1 ∪ · · · ∪ IxK . Note that Ix ∩ A = ∅
for each x ∈ [a, b] \A by the choice of Ix. Therefore, we have A ⊆ Jα1 ∪ · · · ∪ JαN and hence A
is compact.
The proof is finished. 2

Remark 2.4 In fact, the condition in Theorem 2.3(i) is the usual definition of a compact set
for a general topological space. More precise, if a set A satisfies the Definition 1.4, then A is
said to be sequentially compact. Theorem 2.3 tells us that the notation of the compactness and
the sequentially compactness are the same as in the case of a subset of R. However, these two
notation are different for a general topological space.

Strongly recommended: take the courses: MATH 3060; MATH3070 for the next step.

3 Continuous functions defined on compact sets

Throughout this section, let A be a non-empty subset of R and f : A → R a function defined
on A.

Proposition 3.1 Let f be a continuous function defined on a compact subset A of R. Then
f(A) is a compact subset of R.

Proof: Method I: By using Theorem 2.3 (i)⇔ (iii), it suffices to show that f(A) is a closed
bounded subset of R.
Claim 1: f(A) is bounded.
Suppose not. Then for each positive integer n, there is an element xn ∈ A such that |f(xn)| > n.
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Since A is compact, there is a convergent subsequence (xnk
) with a := limk xnk

∈ A. This gives
limk f(xnk

) = f(a) because f is continuous on a and hence, (f(xnk
)) is a bounded sequence.

This leads to a contradiction to the choice of (xn) which satisfies |f(xnk
)| > nk for all k = 1, 2....

Claim 2: f(A) is a closed subset of R, that is, y ∈ f(A) whenever, a sequence (xn) in A
satisfying limn f(xn) = y.
In fact, there is a convergent subsequence (xk) with z := limk xk ∈ A by using the compactness
of A again. This gives y = limk f(xnk

) = f(z) ∈ f(A) as desired since f is continuous on A.
Method II: Alternatively, we are going to use Theorem 2.3 (i)⇔ (ii).
Let {Ji}i∈I be an open interval covers of f(A). We may assume Ji ∩ f(A) 6= ∅ for each i ∈ I.
Notice that since Ji is an open interval and f is continuous, we see that if f(x) ∈ Ji, then we
can find δx > 0 such that f(z) ∈ Ji whenever z ∈ A with |z − x| < δx. Notice that we have
A ⊆

⋃
x∈A Jx, where Vx := (x − δx, x + δx) and hence, {Vx : x ∈ A} forms an open intervals

cover of A. By using the equivalence (i) ⇔ (ii) in Theorem 2.3, we can find finitely many
x1, ..., xn in A such that A ⊆ Vx1 ∪ · · · ∪ Vxn . For each k = 1, .., n, then f(xk) ∈ Jik for some
ik ∈ I. Now if x ∈ A, then x ∈ Vxk for some k = 1, ..., n. This gives f(x) ∈ Jik and thus,
f(A) ⊆ Ji1 ∪ · · · ∪ Jin . The proof is finished. 2

Corollary 3.2 If f : A→ R is a continuous injection and A is compact, then the inverse map
f−1 : f(A)→ A is also continuous.

Proof: Let B = f(A) and g = f−1 : B → A. Suppose that g is not continuous at some b ∈ B.
Put a = g(b) ∈ A. Then there are η > 0 and a sequence (yn) in B such that lim yn = b but
|g(yn) − g(b)| ≥ η for all n. Let xn := g(yn) ∈ A. So, by the compactness of A, there is a
convergent subsequence (xnk

) of (xn) such that limk xnk
∈ A. Let a′ = limk xnk

. Then we have
f(a′) = limk f(xnk

) = limk ynk
= b. On the other hand, since |g(yn) − g(b)| ≥ η for all n, we

see that
|xnk

− a| = |g(ynk
)− g(b)| ≥ η > 0

for all k and hence |a′ − a| > 0. This implies that a 6= a′ but f(a′) = b = f(a). It contradicts
to f being injective.
The proof is finished. 2

Remark 3.3 The assumption of the compactness in the last assertion of Proposition 3.2 is
essential. For example, consider A = [0, 1) ∪ [2, 3] and define f : A→ R by

f(x) =

{
x if x ∈ [0, 1)

x− 1 if x ∈ [2, 3].

Then f(A) = [0, 2] and f is a continuous bijection from A onto [0, 2] but f−1 : [0, 2] → A is
not continuous at y = 1.

Example 3.4 By Proposition 3.2, it is impossible to find a continuous surjection from [0, 1]
onto (0, 1) since [0, 1] is compact but (0, 1) is not. Thus [0, 1] is not homeomorphic to (0, 1).

Proposition 3.5 Suppose that f is continuous on A. If A is compact, then there are points c
and b in A such that

f(c) = max{f(x) : x ∈ A} and f(b) = min{f(x) : x ∈ A}.
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Proof: By considering the function −f on A, it needs to show that f(c) = max{f(x) : x ∈ A}
for some c ∈ A.
Method I:
We first claim that f is bounded on A, that is, there is M > 0 such that |f(x)| ≤ M for
all x ∈ A. Suppose not. Then for each n ∈ N, we can find an ∈ A such that |f(an)| > n.
Recall that A is compact if and only if it is closed and bounded (see Theorem 3.22). So, (an)
is a bounded sequence in A. Then by the Bolzano-Weierstrass Theorem, there is a convergent
subsequence (ank

) of (an). Put a = limk ank
. Since A is closed and f is continuous, a ∈ A,

from this, it follows that f(a) = limk f(ank
). It is absurd because nk < |f(ank

)| → |f(a)| for
all k and nk → ∞. So f must be bounded. So L := sup{f(x) : x ∈ A} must exist by the
Axiom of Completeness.
It remains to show that there is a point c ∈ A such that f(c) = L. In fact, by the definition
of supremum, there is a sequence (xn) in A such that limn f(xn) = L. Then by the Bolzano-
Weierstrass Theorem again, there is a convergent subsequence (xnk

) of (xn) with limk xnk
∈ A.

If we put c := limk xnk
∈ A, then f(c) = limk f(xnk

) = L as desired. The proof is finished.
Method II:
We first claim that f is bounded above. Notice that for each x ∈ A, there is δx > 0 such that
f(y) < f(x) + 1 whenever y ∈ A with |x− y| < δx since f is continuous on A. Now if we put
Jx := (x−δx, x+δx) for each x ∈ A, thenA ⊆

⋃
x∈A Jx. So, by the compactness ofA, we can find

finitely many x1, ..., xN in A such that A ⊆ Jx1∪· · ·∪JxN and it follows that for each x ∈ A, we
have f(x) < 1+f(xk) for some k = 1, ..., N . Now if we put M := max{1+f(x1), ..., 1+f(xN )},
then f is bounded above by M on A.
Put L := sup{f(x) : x ∈ A}. It remains to show that there is an element c ∈ A such that
f(c) = L. Suppose not. Notice that since f(x) ≤ L for all x ∈ A, we have f(x) < L for all
x ∈ A under this assumption. Therefore, by the continuity of f , for each x ∈ A, there are
εx > 0 and ηx > 0 such that f(y) < f(x) + εx < L whenever y ∈ A with |y − x| < δx. Put
Ix := (x−ηx, x+ηx). Then A ⊆

⋃
x∈A Ix. By the compactness of A again, A can be covered by

finitely many Ix1 , ..., IxN . If we let L′ := max{f(x1)+εx1 , ..., f(xN )+εxN }, then f(x) < L′ < L
for all x ∈ A. It contradicts to L being the least upper bound for the set {f(x) : x ∈ A}. The
proof is complete. 2

Definition 3.6 We say that a function f is upper semi-continuous (resp. lower semi-continuous)
on A if for each element z ∈ A and for any ε > 0, there is δ > 0 such that f(x) < f(z) + ε
(resp. f(z)− ε < f(x)) whenever x ∈ A with |x− z| < δ.

Remark 3.7 (i) It is clear that a function is continuous if and only if it is upper semi-
continuous and lower semi-continuous. However, an upper semi-continuous function need
not be continuous. For example, define a function f : R→ R by

f(x) =

{
1 if x ∈ [0, 1]

0 otherwise.

(ii) From the Method II above, we see that if f is upper semi-continuous (resp. lower
semi-continuous) on a compact set A, then the function f attains the supremum (resp.
infimum) on A.
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